
1678
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.7 JULY 2005

PAPER

Internally-Disjoint Paths Problem in Bi-Rotator Graphs

Keiichi KANEKO†a), Member

SUMMARY A rotator graph was proposed as a topology for intercon-
nection networks of parallel computers, and it is promising because of its
small diameter and small degree. However, a rotator graph is a directed
graph that sometimes behaves harmfully when it is applied to actual prob-
lems. A bi-rotator graph is obtained by making each edge of a rotator graph
bi-directional. In a bi-rotator graph, average distance is improved against
a rotator graph with the same number of nodes. In this paper, we give an
algorithm for the container problem in bi-rotator graphs with its evaluation
results. The solution achieves some fault tolerance such as file distribu-
tion based information dispersal technique. The algorithm is of polynomial
order of n for an n-bi-rotator graph. It is based on recursion and divided
into two cases according to the position of the destination node. The time
complexity of the algorithm and the maximum length of paths obtained are
estimated to be O(n3) and 4n− 5, respectively. Average performance of the
algorithm is also evaluated by computer experiments.
key words: container problem, internally-disjoint paths, bi-rotator graphs,
fault tolerance, parallel computation

1. Introduction

Recently, research on parallel and distributed computing
is becoming more important. Moreover, many studies on
so-called massively parallel processing systems are eagerly
conducted. Therefore, many complex topologies [1], [7]
based on Cayley graphs are proposed for interconnection
networks instead of simple networks such as a hypercube,
a mesh and so on. There are many research activities
concerning them [2]–[6], [8]–[14], [16], [18]–[20]. A rota-
tor graph [7] is one such topology and it is very promising
because of its small diameter and degree. However, a rotator
graph is sometimes inadequate to solve practical problems
because it is directed.

A bi-rotator graph [15] is obtained by making each
edge of a rotator graph bi-directional. The average diam-
eter is improved by this modification. One of the unsolved
issues concerning this topology is the container problem: for
a pair of nodes s and d in a k-connected graph G = (V, E),
to find k paths between s and d that are node-disjoint except
for s and d. The container problem is one of the impor-
tant issues [6], [8], [11], [14], [18]–[20] in designing parallel
and distributed computing systems as well as the node-to-set
disjoint paths problem [5], [10], [12], [13], [17]. In this pa-
per, the terms ‘disjoint’ and ‘internally disjoint’ are used to
express ‘node-disjoint’ and ‘node-disjoint except for source

Manuscript received October 5, 2004.
Manuscript revised February 22, 2005.
†The author is with the Faculty of Technology, Tokyo Univer-

sity of Agriculture and Technology, Koganei-shi, 184–8588 Japan.
a) E-mail: k1kaneko@cc.tuat.ac.jp

DOI: 10.1093/ietisy/e88–d.7.1678

and destination.’
In general, a container can be obtained by using the

algorithm for the maximum-flow problem in polynomial-
order time of the number of nodes |V | in the graph. In an n-
bi-rotator graph, the number of nodes is equal to n!. Hence,
the complexity of this approach is impractical. In this paper,
we give an algorithm of polynomial order of n instead of n!.
We estimate the theoretical performance of the algorithm.
We also evaluate its average performance by computer ex-
periment.

The rest of this paper is structured as follows. Sec-
tion 2 gives definitions and auxiliary algorithms. Section 3
explains our algorithm in detail. In Sect. 4, we give a proof
of correctness of our algorithm and estimations of its com-
plexities. We conduct computer experiment in Sect. 5. Sec-
tion 6 describes the conclusion and the future work.

2. Preliminaries

In this section, we first give a definition of a bi-rotator graph
and its properties. Next some auxiliary algorithms including
a simple unicast routing are presented.

2.1 Definitions

Definition 1: For an arbitrary permutation u = (u1, u2, · · ·,
un) of n symbols of 1, 2, · · · , n and an integer i (2 ≤ i ≤ n),
we define positive and negative rotation operations R+i (u)
and R−i (u) as follows:

R+i (u) = (u2, u3, · · · , ui, u1, ui+1, ui+2, · · · , un),

R−i (u) = (ui, u1, u2, · · · , ui−1, ui+1, ui+2, · · · , un).

Note that R+2 and R−2 represent a same rotation opera-
tion. Therefore there are 2n − 3 operations.

Definition 2: An n-bi-rotator graph, BRn, has n! nodes.
Each node has a unique address that is a permutation of
n symbols of 1, 2, · · · , n. The node whose address is u =
(u1, u2, · · · , un) is adjacent to the nodes whose addresses are
elements of the set {R+i (u),R−i (u) | 2 ≤ i ≤ n}.

Table 1 shows comparisons of an n-bi-rotator graph
BRn with other topologies. In the table, Tn, Qn, B(n, k), and
K(n, k) represent an n × n-torus, an n-dimensional hyper-
cube, an (n, k)-de Bruijn graph, and an (n, k)-Kautz graph,
respectively. Up to the present, the average distance of an
n-bi-rotator graph is unknown while its diameter is n−1. As

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers

KANEKO: INTERNALLY-DISJOINT PATHS PROBLEM IN BI-ROTATOR GRAPHS
1679

Table 1 Comparison of a bi-rotator graph with other graphs.

#Nodes Degree Diameter Integr. Ratio†
BRn n! 2n − 3 n − 1 n!

(n−1)(2n−3)
Tn n2 4 2�n/2� n2/8�n/2�
Qn 2n n n 2n/n2

B(n, k) nk n k nk−1/k

K(n, k) nk + nk−1 n k nk−1+nk−2

k†: #Nodes/(Degree × Diameter)

Fig. 1 Examples of 2- to 4- bi-rotator graphs.

for the integration ratio, an n-bi-rotator graph is inferior to
an (n, k)-de Bruijn graph and an (n, k)-Kautz graph. How-
ever, a bi-rotator graph has a recursive property that is ad-
vantageous to execute algorithms based on the divide-and-
conquer method in parallel.

Figure 1 shows examples of 2- to 4- bi-rotator graphs.
Note that in this figure an address (u1, u2, · · · , un) is denoted
by u1u2 · · · un.

Definition 3: In an n-bi-rotator graph, a sub graph induced
by nodes that have a common symbol k at the right-most
positions of their addresses forms an (n−1)-bi-rotator graph.
This sub bi-rotator graph is denoted by BRn−1k by indexing
the common symbol k.

2.2 Algorithm A

Here we give an auxiliary algorithm for BRn in Fig.2 that
establishes a path between an arbitrary pair of nodes s and
d in polynomial time of n.

We assume that s = (s1, s2, · · · , sn) and d =

(d1, d2, · · · , dn), and introduce an order relation defined by
d1 ≺ d2 ≺ · · · ≺ dn. We also assume that a relation j � i
holds if and only if i ≺ j holds.

It is known that a path generated by Algorithm A from
s to d and a path generated by the same algorithm from d to
s are internally disjoint [15].

2.3 Algorithm B

For any nodes x1, x2, y1, y2 in BRn (n ≥ 3) where x1 � x2,
y1 � y2, we give an algorithm that obtains two disjoint paths
each of which has one terminal in X = {x1, x2} and the other

Fig. 2 Algorithm A.

in Y = {y1, y2} in polynomial time of n.

Step 1 If X = Y, then paths [x1] and [x2] are already con-
structed. We output them and terminate. Otherwise, if
X ∩ Y � ∅, let x̃ = X ∩ Y, x = X − {x̃} and y = Y − {x̃},
obtain two internally disjoint paths between x and y by
using Algorithm A to select one of them that does not
include x̃, output the path with [x̃], and terminate.

Step 2 Construct two internally disjoint paths P1 and P2

between x1 and y1. If either of x2 or y2 is not on P1∪P2,
then go to Step 3. Otherwise if both of x2 and y2 are on
P1 ∪ P2, then there are two disjoint paths between x1

and y1, and x2 and y2, or two disjoint sub paths between
x1 and y2, and x2 and y1. Hence, we select them to
output and terminate.

Step 3 Construct internally disjoint two paths Q1 and Q2

between x2 and y2. If both of x1 and y1 are on Q1∪Q2,
we can output two disjoint paths and terminate in the
similar way in Step 2.

Step 4 If at least one of Q1 and Q2 is disjoint to at least one
of P1 and P2, then we can output two disjoint paths and
terminate.

Step 5 Let Q be one of the paths Q1 and Q2 that does
not include neither x1 nor y1. In addition, let u and v
be the nodes on Q ∩ (P1 ∪ P2) that are nearest to x2

and y2, respectively. If u and v are both on either P1

or P2, here we assume that it is P1, then we construct
a path Q′ that consists of the sub path of Q from x2 to
u, the sub path of P1 from u to v, and the sub path of
Q from v to y2. The paths P2 and Q′ are disjoint each
other. On the other hand, if u and v are on different
paths of P1 and P2, say u is on P1 and v is on P2, then
we construct two paths P′ and Q′ so that P′ consists of
the sub path of P2 from x1 to v and the sub path of Q
from v to y2, and Q′ consists of the sub path of Q from
x2 to u, and the sub path of P1 from u to y1. The paths
P′ and Q′ are disjoint each other. Therefore, in either
case, two disjoint paths are obtained. We output them
and terminate.

2.4 Algorithm C

Finally, for x1, y1, y2 ∈ BRn−1h and x2, x3, y3 ∈ BRn−1k

1680
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.7 JULY 2005

Fig. 3 Recursive application of algorithm.

where y1 � y2, x2 � x3, h � k and n ≥ 4, we
give an algorithm that generates three disjoint paths inside
BRn−1h ∪ BRn−1k each of which has one terminal node in
X = {x1, x2, x3} and the other in Y = {y1, y2, y3} in polyno-
mial time of n.

Step 1 In BRn−1h, select a node x0 that is different from x1,
is not adjacent to y3, and has an address of (· · · , k, h) or
(k, · · · , h).

Step 2 For x0, x1, y1, and y2, apply Algorithm B to obtain
two disjoint paths P0 and P1. We assume that the first
node on P0 is x0.

Step 3 Let y0 be the neighbor node of x0 in BRn−1k. For x2,
x3, y3, and y0, apply Algorithm B to obtain two disjoint
paths Q0 and Q1. We assume that the last node on Q0

is y0.
Step 4 Select an edge (y0, x0) to construct a path Q0 ++P0.

Output three paths P1, Q1 and Q0++P0 and terminate.

3. Algorithm

3.1 Classification

For a BR3, the problem is trivial. Hence we assume that
n ≥ 4. Let the source node be s = (s1, s2, · · · , sn), and the
destination node be d = (d1, d2, · · · , dn). Then we consider
the following two cases.

Case 1 The destination node belongs to the same sub bi-
rotator graph as the source node (sn = dn).

Case 2 The destination node is outside of the sub bi-rotator
graph to which the source node belongs (sn � dn).

3.2 Case 1

In this section, we give Procedure 1 that obtains 2n − 3 in-
ternally disjoint paths between the source node s and the
destination node d in case that sn = dn.

Step 1 In BRn−1sn, apply the algorithm recursively to ob-
tain 2n − 5 internally disjoint paths between s and d.
See Fig. 3.

Step 2 Select edges (s,R+n (s)), (s,R−n (s)), (d,R+n (d)), and
(d,R−n (d)).

Step 3 For R+n (s), R−n (s), R+n (d), and R−n (d), if either s1 = d1

or sn−1 = dn−1 holds, try to establish paths between
R+n (s) and R+n (d), and between R−n (s) and R−n (d). Oth-
erwise, try to establish paths between R+n (s) and R−n (d),

Fig. 4 Construction of two outside paths (s1 = d1 , sn−1 � dn−1).

and between R−n (s) and R+n (d). If the pair of nodes be-
long to a same sub graph, apply the auxiliary algorithm
A inside the sub graph to obtain a path. Otherwise, se-
lect a path between the pair of nodes so that the path
does not include any node outside of the sub graphs to
which those nodes belong. See Fig. 4.

3.3 Case 2

In this section, we give Procedure 2 that obtains 2n − 3 in-
ternally disjoint paths between the source node s and the
destination node d in case that sn � dn.

Step 1 First, name each of neighbor nodes of s as follows:

ai = R+i (s) (2 ≤ i ≤ n), bi = R−i (s) (3 ≤ i ≤ n).

Next, construct paths from s to sub graphs BRn−1s1,
BRn−1s2, · · · ,BRn−1sn−1 that are disjoint except for s as
follows. Let u be the other terminal node of the path
from s to BRn−1dn.

(In case that dn = s1)
a2 → R+n (a2)(∈ BRn−1s2)
a3 → R−2 (a3)→ R+n (R−2 (a3))(∈ BRn−1s3)
...

an−2 → R−n−3(an−2) → R+n (R−n−3(an−2))(∈
BRn−1 sn−2)
an−1 → R+n (an−1)(∈ BRn−1s2)
an(∈ BRn−1 s1)
b3 → R+n (b3)(∈ BRn−1s3)
b4 → R+n (b4)(∈ BRn−1s4)
...

bn−1 → R+n (bn−1)(∈ BRn−1sn−1)
bn(∈ BRn−1 sn−1)
See Fig. 5.

(In case that dn = sn−1)
a2 → R+n (a2)(∈ BRn−1s2)
a3 → R−2 (a3)→ R+n (R−2 (a3))(∈ BRn−1s3)
...

an−2 → R−n−3(an−2) → R+n (R−n−3(an−2))(∈
BRn−1 sn−2)

KANEKO: INTERNALLY-DISJOINT PATHS PROBLEM IN BI-ROTATOR GRAPHS
1681

Fig. 5 Construction of disjoint paths from the source node to sub graphs
(dn = s1).

Fig. 6 Construction of disjoint paths from the source node to sub graphs
(dn = sn−1).

an−1 → R+n (an−1)(∈ BRn−1s2)
an(∈ BRn−1 s1)
b3 → R+n (b3)(∈ BRn−1 s3)
b4 → R+n (b4)(∈ BRn−1 s4)
...

bn−2 → R+n (bn−2)(∈ BRn−1sn−2)
bn−1 → R−2 (bn−1)→ R+n (R−2 (bn−1))(∈ BRn−1s1)
bn(∈ BRn−1 sn−1)
See Fig. 6.

(In case that dn = s j (j � 1, n − 1))
a2 → R+n (a2)(∈ BRn−1 s2)
a3 → R−2 (a3)→ R+n (R−2 (a3))(∈ BRn−1s3)
...

a j−1 → R−j−2(a j−1) → R+n (R−j−2(a j−1))(∈
BRn−1s j−1)
a j → R−j+1(a j)→ R+n (R−j+1(a j))(∈ BRn−1s j+1)

Fig. 7 Construction of disjoint paths from the source node to sub graphs
(dn = s j, j � 1, n − 1).

...
an−2 → R−n−1(an−2) → R+n (R−n−1(an−2))(∈
BRn−1 sn−1)
an−1 → R+n (an−1)(∈ BRn−1s2)
an(∈ BRn−1 s1)
b3 → R+n (b3)(∈ BRn−1s3)
b4 → R+n (b4)(∈ BRn−1s4)
...

bn−2 → R+n (bn−2)(∈ BRn−1sn−2)
bn−1 → R−2 (bn−1)→ R+n (R−2 (bn−1))(∈ BRn−1s1)
bn(∈ BRn−1 sn−1)
See Fig. 7.

Step 2 As similar to Step 1, construct paths from
the destination node d to sub graphs BRn−1d1,
BRn−1d2, · · · ,BRn−1dn−1 that are disjoint except for d.
If u = d, then refrain from constructing a path from d
to BRn−1sn. Otherwise, that is, if u � d, then let v be
the other terminal node of the path from d to BRn−1sn.
See Fig. 8.

Step 3 If a path between s and d is not established yet,
construct paths from u to d, and from v to d, and let ũ
and ṽ be the first nodes on the previously constructed
paths that are encountered by these paths. Let û and v̂
be the terminal nodes of these paths other than s and d,
and discard sub paths from ũ to û and from ṽ to v̂. See
Fig. 9.

Step 4 In each sub graph other than BRn−1sn and BRn−1dn,
if even number of paths constructed in Steps 1 and 2
have reached to the sub graph, apply Algorithm A or
B to connect terminal nodes appropriately. If there
are two sub graphs both of which have three terminal
nodes of paths, for these sub graphs, apply Algorithm
C to connect these terminal nodes appropriately. See
Fig. 10.

1682
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.7 JULY 2005

Fig. 8 Construction of disjoint paths from the destination node to sub
graphs.

Fig. 9 Construction of paths between s and d.

Fig. 10 Construction of paths in sub bi-rotator graphs.

4. Proof of Correctness and Estimations of Complexi-
ties

In this section, we give a proof of correctness of our algo-
rithm and estimations of complexities concerning about its
execution time and the maximum length of paths generated
by our algorithm. Note that we use a linear array to represent
an address of a node and all the nodes on the constructed
paths are stored in memory.

First we give some lemmas which hold for auxiliary
algorithms without proofs.

Lemma 1: For an n-bi-rotator graph, the time complexity
of Algorithm A is O(n2) and the maximum length of paths
obtained is n − 1.

Note that all the internal nodes except for two terminal
nodes on the path generated by Algorithm A have different
first symbols in their addresses. Hence, if we compare the
addresses of nodes from the first symbols, we can decide if
any node is on such a path or not in O(n) because only three
nodes on the path match with the first symbol of the node
at most. Therefore, the time complexity of Algorithm B is
O(n2).

Lemma 2: For an n-bi-rotator graph, Algorithm B gener-
ates disjoint two paths and its time complexity is O(n2). The
maximum length of paths obtained by Algorithm B is 2n−4.

Lemma 3: For an n-bi-rotator graph, Algorithm C gener-
ates disjoint two paths and its time complexity is O(n2).
The maximum length of paths obtained by Algorithm C is
4n − 11.

Next we show a theorem for our algorithm as well as
lemmas which are necessary to prove the theorem in this
order.

Theorem 1: The paths generated by our algorithm are in-
ternally disjoint. Let T (n) represent the time complexity of
the algorithm for an n-bi-rotator graph. Then T (n) = O(n3).
Let L(n) represent the maximum length of the paths. Then
L(n) = 4n − 5.
(Proof) Based on the facts that T (3) = O(1) and L(3) = 3
hold, and induction on n, this theorem can be proved from
the following two lemmas.

Lemma 4: The paths generated by Procedure 1 are in-
ternally disjoint. The time complexity of Procedure 1 is
T (n − 1) + O(n2), and the maximum length of the paths is
max{L(n − 1), n + 2}.
(Proof) The paths obtained in Step 1 are internally disjoint
from induction hypothesis. Two paths between s and d gen-
erated in Steps 2 and 3 consist of nodes in different sub
graphs other than BRn−1sn except for s and d. Therefore,
all paths obtained by Procedure 1 are internally disjoint.

The time complexity of Step 1 is T (n−1) and the max-
imum length of paths generated in Step 1 is L(n − 1). The
time complexities of Step 2 and Step 3 are O(n) and O(n2),

KANEKO: INTERNALLY-DISJOINT PATHS PROBLEM IN BI-ROTATOR GRAPHS
1683

respectively. The maximum length of the paths generated in
Steps 2 and 3 is n + 2. Hence the time complexity of Proce-
dure 1 is T (n−1)+O(n2), and the maximum length of paths
generated by Procedure 1 is max{L(n − 1), n + 2}.
Lemma 5: The paths generated by Procedure 2 are inter-
nally disjoint. The time complexity of Procedure 2 is O(n3),
and the maximum length of the paths is 4n − 5.
(Proof) The final edges of the paths obtained in Step 1 are all
generated by the positive rotation operation R+n . Then if we
show that the nodes on the paths in BRn−1sn are all different
each other, it is proved that the paths obtained in Step 1 are
disjoint except for the source node. First, the nodes ai’s and
b j’s are all different neighbor nodes of s. Hence, we show
that other nodes on the paths in BRn−1 sn are different each
other and they are not adjacent to s. In case that dn = s1,
other nodes on the paths are obtained by applying R−i−1 to ai.
Hence, these nodes have addresses which can be obtained
by exchanging s1 and si in the address of the source node s
and they are different each other and they are not adjacent
to s. In case that dn = sn−1, proof is similar to the case of
dn = s1 except for R−2 (bn−1). As for R−2 (bn−1), if we focus on
the fact that it has an address which is obtained by inserting
sn−1 between s1 and s2 in the address of s, it is deduced that
the node is not adjacent to s and it is different from other
nodes on the paths. In case that dn = s j, j � 1, n − 1, if we
focus on the fact that for ai (3 ≤ i ≤ n − 1, i � j), paths via
nodes that have addresses obtained by exchanging s1 and si

or si+1 in the address of s are constructed, proof can be ob-
tained in a similar way in the case of dn = sn−1. In Step
2, we can prove that the paths generated are disjoint except
for the destination node in a similar way in Step 1. In Step
3, the paths established between s and d by discarding sub
paths and other paths are internally disjoint. Finally, paths
generated in Step 4 are disjoint from lemmas 2 and 3, and
the paths obtained by connecting these paths and the paths
generated in Steps 1 and 2 are also internally disjoint.

The time complexities of Steps 1 and 2 are both O(n2),
and the maximum lengths of paths are both 3. The time
complexity of Step 3 and the maximum length of paths gen-
erated in Step 3 are O(n2) and n − 2, respectively. From
lemmas 2 and 3, the time complexity of Step 4 is O(n3) and
the maximum length of paths generated in Step 4 is 4n− 11.
Therefore the whole time complexity is O(n3) and the max-
imum length of paths generated in Procedure 2 is 4n − 5.

5. Computer Experiment

To evaluate the performance of our algorithm, for each n
between 3 and 50 we selected 10, 000 random combinations
of the source and destination nodes to apply our algorithm
and measured the average execution time and the maximum
path lengths.

The algorithm is implemented by a functional pro-
gramming language Haskell. The program is com-
piled by ghc (glasgow Haskell compiler) with -O and

-fglasgow-exts options. The experiment is conducted on
a machine whose OS is Red Hat Linux 7.2, CPU is Pentium
III 700 MHz, and memory unit is 256 MB.

Figures 11 and 12 show the results of the average ex-
ecution time and the maximum path length, respectively.
In each figure, the horizontal axis represents the value of
n. The vertical axes of Figs. 11 and 12 represent the aver-
age execution time in second and the maximum length of
paths obtained by our algorithm, respectively. In case of
n = 50, the average execution time is 1.747 × 10−1 and the
standard deviation is 2.873 × 10−2. Hence the 95-percent
confidence interval is [1.742× 10−1, 1.753× 10−1], which is
small enough.

From these figures, we can conclude that for an n-bi-
rotator graph, our algorithm generates 2n − 3 internally dis-
joint paths in the average execution time O(n3.0) and the
maximum length of these paths is 2n + 2 in practice.

In general, the maximum length of paths generated by
Algorithm C is 4n − 11. However, in the implementation of
Step 1 of Algorithm C, we try to find the node x0 so that
its neighbor node y0 becomes either x1 or x2, or becomes
a neighbor node of x1 or x2. Though it is not proved that
such node can be always selected and the adjacent nodes are
always connected in Step 3 of Algorithm C, it worked well

Fig. 11 Average execution time of our algorithm.

Fig. 12 Maximum length of paths obtained by our algorithm.

1684
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.7 JULY 2005

in critical cases in the experiment. Therefore the maximum
length of the paths generated by Algorithm C is 2(n − 1) −
4 + 2 = 2n − 4. Hence the maximum length of the paths is
2n + 2 as a whole.

6. Conclusion and Future Work

In this paper, we have proposed an algorithm that solves the
internally-disjoint paths problem in an n-bi-rotator graph.
The algorithm is divided into two cases and it uses three
auxiliary algorithms. Theoretical values for its time com-
plexity and the maximum length of paths obtained by the
algorithm are estimated to be O(n3) and 4n−5, respectively.
Computer experiment showed that the disjoint paths are ob-
tained in O(n3.0) time and the maximum length of them is
2n + 2. The future work includes improvement of the algo-
rithm so that the shorter paths are obtained in shorter time.
The strict estimation of the maximum length of the disjoint
paths is also included in the future work.

Acknowledgement

This study is partly supported by Grant-in-Aid for Scientific
Research (C) of Japan Society for the Promotion of Science
under the Grant No. 16500015.

References

[1] S.B. Akers and B. Krishnamurthy, “A group theoretic model for
symmetric interconnection networks,” IEEE Trans. Comput., vol.38,
no.4, pp.555–566, April 1989.

[2] S.G. Akl and K. Qiu, “Parallel minimum spanning forest algorithms
on the star and pancake interconnection networks,” Proc. Joint Con-
ference Vector and Parallel Processing, pp.565–570, Sept. 1992.

[3] S.G. Akl and K. Qiu, “A novel routing scheme on the star and pan-
cake interconnection networks and its applications,” Parallel Com-
put., vol.19, no.1, pp.95–101, Jan. 1993.

[4] S.G. Akl, K. Qiu, and I. Stojmenović, “Fundamental algorithms for
the star and pancake interconnection networks with applications to
computational geometry,” Networks, vol.23, no.4, pp.215–226, July
1993.

[5] P. Berthomé, A. Ferreira, and S. Perennes, “Optimal information
dissemination in star and pancake networks,” IEEE Trans. Parallel
Distrib. Syst., vol.7, no.12, pp.1292–1300, Dec. 1996.

[6] B. Bose, B. Broeg, Y. Kwon, and Y. Ashir, “Lee distance and topo-
logical properties of k-ary n-cubes,” IEEE Trans. Comput., vol.44,
no.8, pp.1021–1030, Aug. 1995.

[7] P.F. Corbett, “Rotator graphs: An efficient topology for point-to-
point multiprocessor networks,” IEEE Trans. Parallel Distrib. Syst.,
vol.3, no.5, pp.622–626, Sept. 1992.

[8] M. Dietzfelbinger, S. Madhavapeddy, and I.H. Sudborough, “Three
disjoint path paradigms in star networks,” Proc. 3rd IEEE Symp.
Parallel and Distributed Processing, pp.400–406, 1991.

[9] L. Garfgano, U. Vaccaro, and A. Vozella, “Fault tolerant routing in
the star and pancake interconnection networks,” Inf. Process. Lett.,
vol.45, no.6, pp.315–320, June 1993.

[10] Q.-P. Gu and S. Peng, “Node-to-set disjoint paths problem in star
graphs,” Inf. Process. Lett., vol.62, no.4, pp.201–207, April 1997.

[11] Y. Hamada, F. Bao, A. Mei, and Y. Igarashi, “Nonadaptive fault-
tolerant file transmission in rotator graphs,” IEICE Trans. Funda-
mentals, vol.E79-A, no.4, pp.477–482, April 1996.

[12] K. Kaneko and Y. Suzuki, “An algorithm for node-to-set disjoint

paths problem in rotator graphs,” IEICE Trans. Inf. & Syst., vol.E84-
D, no.9, pp.1155–1163, Sept. 2001.

[13] K. Kaneko and Y. Suzuki, “Node-to-set disjoint paths problem
in pancake graphs,” IEICE Trans. Inf. & Syst., vol.E86-D, no.9,
pp.1628–1633, Sept. 2003.

[14] K. Kaneko and Y. Suzuki, “Node-to-node internally disjoint paths
problem in bubble-sort graphs,” Proc. 10th Pacific Rim Int’l Symp.
Dependable Computing, pp.173–182, March 2004.

[15] H.-R. Lin and C.-C. Hsu, “Topological properties of bi-rotator
graphs,” IEICE Trans. Inf. & Syst., vol.E86-D, no.10, pp.2172–
2178, Oct. 2003.

[16] K. Qiu, H. Meijer, and S.G. Akl, “Parallel routing and sorting on
the pancake network,” Proc. Int’l Conf. Computing and Information,
pp.360–371, May 1991.

[17] M.O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” J. ACM, vol.36, no.2, pp.335–348,
Feb. 1989.

[18] Y. Saad and M.H. Schultz, “Topological properties of hypercubes,”
IEEE Trans. Comput., vol.37, no.7, pp.867–872, July 1988.

[19] Y. Suzuki and K. Kaneko, “An algorithm for node-disjoint paths
in pancake graphs,” IEICE Trans. Inf. & Syst., vol.E86-D, no.3,
pp.610–615, March 2003.

[20] Y. Suzuki, K. Kaneko, and M. Nakamori, “Container problem in
substring reversal graphs,” Proc. Int’l Symp. Parallel Architectures,
Algorithms and Networks, pp.563–568, May 2004.

Keiichi Kaneko is an Associate Professor
at Tokyo University of Agriculture and Technol-
ogy. His main research areas are functional pro-
gramming, parallel and distributed computation,
partial evaluation and fault-tolerant systems. He
received the B.E., M.E. and Ph.D. degrees from
the University of Tokyo in 1985, 1987 and 1994,
respectively. He is also a member of ACM,
IPSJ, and JSSST.

