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Abstract. Operation modes of helicon discharge excited by doublem = 0 antenna at high argon
pressures of 51 and 6 mTorr are examined experimentally and theoretically. The behaviour of the
discharge, including abrupt density jumps, is found to depend strongly on the relative directions of
the currents in the antenna loops (on the antenna spectrum). Experimental results are interpreted
in terms of theory which considers the radio frequency power absorption with due regard to the
conversion of helicon waves into electrostatic waves. Computed dependences of the plasma load
resistance on plasma density and input power, and magnetic field profiles satisfactorily agree
with experimental data over a wide range of operation parameters. Thresholds for density jumps
estimated from the power balance consideration are also in agreement with experimental values.

1. Introduction

Helicon discharge has attracted growing interest as a source of dense plasmas for various
applications and basic research including materials processing, fusion experiments, gas lasers,
modelling of space plasmas etc (see, e.g., [1, 2] and references therein). Both experiments and
theoretical computations reported so far have normally dealt with discharges at relatively low
gas pressures, in the range below 10–20 mTorr, when the electron collision frequency νe is
less or about ω, the driving frequency. Note that in materials processing this pressure area is
of primary interest for etching technologies [3]. Helicon plasmas demonstrate abrupt jumps
between low and high density modes, which may be stimulated by a continuous variation of
external parameters, for example, input power. These jumps are identified with transitions
between three modes of antenna-to-plasma coupling, that is capacitively (CC), inductively
(IC), and wave (WC) coupled modes. A CC to IC mode transition is intrinsic for any inductive
discharge [4], whereas a transition between IC and WC modes is a characteristic feature of the
helicon discharge. The latter was measured in experiments with various devices [5–7], and
interpreted theoretically [8–11].

The area of high pressures, of the order of a few tens of mTorr, is of interest for deposition
technologies [3]. For radio frequency (rf) sources, the electron collision frequency νe in this
area is higher, or even much higher than ω. Normally, waves cannot propagate at such high
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collisions because of strong damping. However, this is not the case for helicon waves which
are known to be weakly damped under condition νe � ωce cosφ, and thus can exist even
at νe � ω [12]. Here ωce is the electron cyclotron frequency, and φ the propagation angle
with respect to the magnetic field. Although the capacity of the helicon discharge to operate
at relatively high pressures, up to hundreds of mTorr, was reported in a set of experiments
[13–15], little experimental data are available in this area.

In recent experiments [16], detailed measurements were performed on the discharge modes
of a helicon source excited by double m = 0 antenna at a frequency of 7 MHz and high Ar
pressures up to 51 mTorr. Depending on the electron density and temperature, the νe/ω

ratio could reach the value of ten and more in those experiments. It was found that jump-
like transitions, which increase the plasma density by up to two orders of magnitude, are
intrinsic for the high pressure discharge as well as for the low pressure one. Density jumps
are accompanied by jumps of the plasma load resistance, and by substantial alteration of the rf
magnetic field profiles. The behaviour of the discharge was shown to depend strongly on the
relative directions of the currents in the antenna loops, that is on the antenna spectrum.

In this paper, experimental data obtained in conditions similar to those of previous
experiments [16] are compared in detail with computations on the basis of the theoretical
model reported in [8]. That model takes into account, along with direct absorption of helicon
waves due to collisions, the effect of mode conversion of helicons into electrostatic Trivelpiece–
Gould waves. Obtained results, including the magnetic field profiles, dependences of plasma
load resistance on plasma density and input power, and predictions of abrupt density jumps, are
found to be in satisfactory agreement with experimental data over a wide range of operational
parameters. The paper is organized as follows. A brief description of theoretical model and
principal results for interpretations of experimental data are presented in section 2. Detailed
comparison of experimental data with computations is made and discussed in section 3,
followed by the concluding section, section 4.

2. Theoretical model and predictions

A theoretical model reported in [8] has been modified to perform computations for the
experimental conditions [16]. A helicon source is considered as a uniform plasma column
of radius r0 restricted in the axial direction by two conducting flanges located at z = R and L
(see figure 1). The total length of the plasma column,
z = R−L, makes a computation base.
Two loops of the double m = 0 antenna, of radius ra and of finite width d, contain currents
which are equal in amplitude with parallel or anti-parallel directions. In the computations it
is normally supposed that r0 = ra. A small gap between the plasma surface and antenna does
not affect coupling substantially. One example in support of this statement will be given in
figure 4 (see also [17]).

The density of the azimuthal antenna current, ja = ia(z)δ(r − r0) cosωt , is represented
as a sum of Fourier harmonics over axial discrete wavenumbers k = lzπ/
z (lz = 1, 2, . . .).

ia =
∑

ik sin kz′ (1)

where z′ = z − L. The density of the antenna current is considered to be uniform across the
antenna loops in the axial direction, the validity of this assumption being argued in [18]. In
addition, it is supposed to be independent of the azimuthal angle, which corresponds to purely
inductive (electromagnetic) coupling, ∇ · ia = 0, that is in the absence of charges induced in
the antenna. One can find the spectra ik for the same and opposite directions of currents in the
antenna loops in figure 2 of [16].
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Figure 1. Theoretical model of a helicon source with conducting end flanges denoted as CF.
Calculation parameters: L = −80 cm, R = 0 or 80 cm, r0 = 2.5 cm, za = −20 cm, b = 2 cm,
d = 1 cm, and |Ia1| = |Ia2| = 1 A.

Similar to (1) series are used to represent the fields:

E =
∑ [

E⊥k(r) sin kz′ + ẑEzk(r) cos kz′
]

exp(−iωt) + cc (2)

B =
∑ [

B⊥k(r) cos kz′ + ẑBzk(r) sin kz′
]

exp(−iωt) + cc (3)

where ẑ is a unit vector in the axial direction.
It is worth while noting that such an approach does not yield the total fields as purely

standing in the z-direction waves. Each of the harmonics in expressions (2) and (3) is indeed
the axially standing wave, but the total fields have standing patterns at zero dissipation only.
In the presence of dissipation (collisions, Landau damping, etc), the spectral amplitudes of
the fields are complex. As a result, sums (2) and (3) represent the fields with phases which
depend on the axial coordinate as well as on the radial one. That means that total fields are not
standing waves, but are found to be (outside the region under the antenna) the travelling waves,
as irradiated by the antenna, with some standing admixture, due to partial reflection from the
conducting ends. In the region under the antenna, fields have nearly standing patterns. Some
travelling fraction may be found in this region due to the asymmetry of the antenna itself, or
its position relative to the reflecting ends.

Series (2) and (3) are used to solve the Maxwell equations in the way described in [8].
Introducing the dimensionless field amplitudes ek and bk

Ek(r) = (2π/c)ikek(r) Bk(r) = (2π/c)ikbk(r) (4)

one arrives at the following expression for the antenna load impedance Za = Ra − iLa

Za = −4π2r0
z

c

∑ ∣∣∣∣
ik

Ia

∣∣∣∣
2

eθk(r = r0) (5)

where c is the speed of light, the sum is taken over all the harmonics, Ia is the amplitude of
the antenna current, eθk is the complex amplitude of the azimuthal electric field, and cgs units
are used. The plasma load impedance is defined as Zp = Za − Zv where Zv is the vacuum
(without plasma) load impedance [8].

The dimensionless field amplitudes are the solutions to the following equations

iNeθk = brk iNbθk = K1erk + iK2eθk
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N
(
erk − e′zk

) = ibθk N
(
brk + b′

zk

) = K2erk + iK1eθk

iN (ρeθk)
′ = −ρbzk iN (ρbθk)

′ = ρK3ezk (6)

where N = kc/ω is a longitudinal refractive index, and the prime denotes a derivative with
respect to the dimensionless radius ρ = kr . The permittivity tensor is considered in the
following approximation (see, e.g. [19])

K1 = 1 −
(
ω2

peγe/

)

−
(
ω2

pi/ω
2γi

)
K2 = ω2

peωce/ω


K3 = 1 + (krDe)
−2 [1 − w(ξ)] [

1 − i(νe/ωγe)w(ξ)
]−1

(7)

where ωpe,i are the electron and ion plasma frequencies, rDe is the electron Debye radius,


 = (ωγe)
2 − ω2

ce γe,i = 1 + i(νe,i/ω) (8)

ωce is the electron cyclotron frequency, and it is assumed that ω � ωci, the ion cyclotron
frequency. Tensor (7) takes into account both electron–neutral and electron–ion collisions,
with total frequency νe = νen + νei, as well as ion collisions with frequency νi. We used
in the computations the following approximation for electron–neutral collisions in argon,
νen = 1.3 × 106pArTe (s−1), where pAr is the Ar pressure, in mTorr, and Te the electron
temperature, in eV. According to our calculations (see also [20]), this is a satisfactory estimation
for the collision frequency in the range of electron temperatures of 3–8 eV. The electron–ion
collision frequency, νei, was estimated using the Spitzer formula. The ratio of νei/νen increases
approximately linearly with electron density. For n0 = 1013 cm−3, pAr = 51 mTorr, and
Te = 4 eV, this ratio makes the value of 0.15, whereas it is about unity at 6 mTorr. Ion–neutral
collisions come into play at magnetic fields of the order of and above the critical value of
680 G, which is defined by the equation ω = ωLH ≈ (ωceωci)

1/2, where ωLH is the lower
hybrid frequency, the ion cyclotron frequency ωci is estimated for Ar, and ω/2π = 7 MHz.
For our conditions, the ratio of νi/νe does not exceed 0.1, so that ion collisions are of minor
importance for the wave damping.

The effect of Landau damping is included in the component K3 of the permittivity tensor
(7), where

ξ = ωγe/2
1/2kνTe w(ξ) = π1/2ξ exp(−ξ 2)[Erfi(ξ)− i] (9)

νTe is the electron thermal velocity, and Erfi(ξ) the imaginary error function. This form of K3

arises provided the collision integral is used in the Bhatnagar–Gross–Krook approximation
[19]. That approximation is known to describe well the electron–neutral collisions, but it is
not so adequate for Coulomb collisions. However, the use of K3 in the above form (7) is
adequately justified for two reasons. First, electron–ion collisions are substantially lower than
electron–neutral collisions at the high pressures under consideration. Second, computations
show the small effect of Landau damping, so that a more accurate treatment of the electron–ion
collision integral is not needed.

Equations (6) should be completed by joining conditions at the plasma–vacuum interface
r = r0

{et} = {ez} = {bt } = 0 {bz} = −1 (10)

where braces refer to the boundary jump of appropriate variable, {f } ≡ f (r0 + 0)−f (r0 −0),
and the subscript t denotes the field component tangential to the plasma surface.

We use the approximation of the uniform density profile, which seems to be quite relevant
for our needs. Indeed, the effect of non uniformity is not so dramatic for m = 0 excitation, as
it is form = ±1 excitation. (In the latter case, the effect is enhanced due to the suppression of
the m = −1 modes in non-uniform plasma [17, 21].) In addition, the profile is substantially
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more uniform at high collisions as compared with the case of low collisions, as will be seen
from figure 5 presented below.

With a uniform density profile, equations (6) and (10) are readily resolved in the Bessel
functions [8]. Analysis of solutions obtained in this way show that rf power is absorbed via
two different mechanisms. The first is direct absorption of helicon waves excited by antenna
due to collisional and collisionless (Landau) damping [12]. The second mechanism, which is
normally a dominant one, arises due to the edge conversion of helicon waves into electrostatic
Trivelpiece–Gould (TG) waves [8]. Although TG waves are strongly damped at high collisions,
the efficiency of this conversion mechanism turns out to be very high at νe > ω, as well as at
νe < ω.

The obtained expressions for the fields and plasma load resistance were computed using
the package Mathematica 3.0. A finite number of harmonics, lz = 1, 2, . . . , lzmax, was taken
into account in series (2), (3) and (5), with appropriate control of accuracy. In agreement with
the experimental conditions [16], the numerical values of the geometrical parameters were
chosen as follows (see figure 1)

za = −20 cm b = 2 cm d = 1 cm r0 = 2.5 cm L = −80 cm. (11)

The position of the left-hand conducting flange in the computation model, z = L = −80 cm, is
the same as in experiment [16]. To be strictly appropriate for the experiment, the axial position
of the right-hand conducting flange should be chosen, generally speaking, at z = R = 170 cm.
(In the experiment [16], the z = 0 position corresponds to the exit of the source into a large drift
chamber of length 170 cm.) In this case, the total length of the plasma column (computation
base) reaches the value of 
z = 250 cm. As long as a minimal axial scale, which is the
width of antenna loops, reaches d = 1 cm, the number of harmonics to be taken into account,
lzmax, should be several times the ratio of 
z/d, that is several hundred. Such a scheme,
however, takes too much time for computation. Fortunately, it was found that use of such a
long computation base and large number of harmonics is not needed because of the considerable
damping of helicon waves at high collisions. For calculations of the plasma load impedance,
it was normally enough to put R = 0 cm, that is 
z = 80 cm, and to include lzmax = 50
harmonics. Adding more harmonics, at the same base, did not change the result substantially.
To check the accuracy we also computed the impedance with a longer base, 
z = 160 cm
(R = 80 cm), and with increased number of harmonics, lzmax = 150. The change in results
was found to be less than 10%.

A higher number of harmonics and a longer computation base were needed to calculate
the field profiles, especially in the area near the antenna. The problem is that very short-scale
harmonics, corresponding to non-propagating (evanescenting) helicon waves, do not contribute
to the absorption (see [8] for the justification), but they form the fine details of the near antenna
field. It was found that lzmax = 300 harmonics with 
z = 160 cm were enough to reach the
accuracy of a few per cent.

Figure 2 shows the variation with density of real (resistance) and imaginary (reactance)
parts of the plasma load impedance, Zp = Rp − iLp, calculated using relation (5). Note that
Rp = Ra, as long as vacuum (without plasma) load resistance is neglected in theory. One
can see from figure 2 that plasma resistance is not very sensitive to the electron temperature,
and thus to the electron collision frequency, as well as to the effect of Landau damping. The
effects of temperature and Landau damping on plasma reactance are higher at low densities,
but decrease with increasing density.

In the low collision case, νe < ω, the variation of resistance with density and/or magnetic
field is substantially non-monotonic [8]. This demonstrates a set of maxima and minima due
to the contribution to the absorption of various axial and radial modes. At high collisions, the
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Figure 2. Computed variation with density of plasma load resistance (Rp) and reactance (Lp), for
parallel currents in antenna loops. Magnetic field B0 = 100 G and Ar pressure pAr = 51 mTorr.
Three curves correspond to electron temperatures of 4 eV, 8 eV and 4 eV with Landau damping
neglected.

variation of resistance is found to be quite smooth. As seen from a three-dimensional plot in
figure 3, multiple maxima and minima are absent because they are blurred out by collisions at
pAr = 51 mTorr. One can see from figure 3 that in the case of anti-parallel antenna currents the
resistance reaches substantial values at low magnetic fields, and drops rapidly with increasing
B0. The reason for this is that the antenna excites only short helicon waves in this case (the
first spectral maximum for anti-parallel currents is around lz ≈ 35). The threshold on density
for the excitation of helicons [8],

n0 >
c

8e

B0l
2
z

f (
z)2
(12)

where e is the electron charge, is found to be very high for short modes at high magnetic field.
For lz = 35 and 
z = 80 cm, inequality (12) takes the form n0 > 2.1 × 1011B0, where n0 is
in cm−3, and B0 in G. The resistance maximum at low B0 is formed just as the result of the
excitation of modes near the spectral maximum. In the region of B0 > 50 G, the resistance is
lower because it is formed by lower harmonics, lz < 35, with relatively small amplitudes.

One can see from figure 3 that the calculated plasma resistance does not demonstrate any
peculiarities in the range of magnetic fields relative to the lower hybrid resonance,B0 ≈ 680 G.
The reason for this is that at high Ar pressures, νe > ω, the LH resonance is totally blurred
out by collisions. This is in agreement with results on high pressure discharge [16] where no
extra behaviour in the power absorption and density profiles was observed in the region of
resonance magnetic fields.

In [8, 11], jumps of the helicon discharge to the high density mode were interpreted
using the following power balance arguments. The power absorbed by the plasma takes the
form Pabs(n0) = (1/2)Rp(n0)I

2
a , where Ia = |Ia1| = |Ia2|. With growing antenna current,

the absorption curve, Pabs(n0), increases in amplitude. When the antenna current reaches
some critical value, the absorption curve touches the loss line, Ploss = αn0, where α is some
coefficient. Then the density jump occurs, as shown in figure 4. As long as our model takes



A high pressure helicon source 871

Figure 3. Computed dependences of plasma resistance on density and magnetic field, for parallel
and anti-parallel antenna currents. pAr = 51 mTorr and Te = 4 eV.

(This figure is in colour only in the electronic version, see www.iop.org)

into account inductive coupling only, it predicts that the discharge jumps from zero plasma
density to n0 = nth. Of course, such an approach to the density jumps is substantially heuristic.
It is based on the power balance arguments only, and does not specify the process of the jump
in detail. A better understanding of that process needs a more perfect model with both rf
power coupling and transport phenomena included, similar to that developed for modelling
the rf plasma production in the magnetic trap in the ICR frequency range [22]. However, our
simple approach turns out to yield reasonable estimations for jump thresholds.

To include the effect of the finite gap between the plasma column and antenna, one should
multiply the terms of sum in the right-hand-side of formula (5) by (ra/r0)[K1(kra)/K1(kr0)]
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Figure 4. Absorption curve (full curve) at a critical antenna current corresponding to the coupling
of the discharge to the high mode of density nth. The jump to the point H, shown by an arrow, occurs
at a critical absorbed powerPth. A straight line shows the plasma losses assumed to depend linearly
on density, Ploss = αn0. Calculation parameters: parallel antenna currents, pAr = 6 mTorr, and
Te = 8 eV. The broken absorption curve was computed with a finite gap between the antenna and
plasma, at ra = 3 cm.

where K1 is the Macdonald function. The broken curve in figure 4 was computed with an
antenna 0.5 cm from the plasma, ra = 3 cm. One can see that the effect of the vacuum
gap is very small at low densities but increases with density, the reason for this being as
follows. In a vacuum, perpendicular wavenumbers of harmonics generated by antenna are
k⊥ ≈ ik

(
N2 +N2

⊥ = 1, N � 1
)
, so that their fields drop from the antenna approximately as

exp(−k|r − ra|). Long harmonics easily penetrate through the vacuum gap to excite fields in
the plasma, whereas short harmonics, which satisfy the inequality

k(ra − r0) > 1 (13)

are substantially reduced in the plasma. The effect of the gap depends on how many harmonics
satisfying (13) are included in the antenna spectrum, and on how effectively these harmonics
are excited in the plasma. The role of short harmonics is clearly more important in the spectrum
of anti-parallel currents. On the other hand, the excitation of short harmonics in the plasma is
more effective at high densities, as seen from relation (12). Computations show that a reduction
of impedance due to the 0.5 cm vacuum gap turns out to be less than 30% over the range of
densities under consideration. As long as thresholds for jumps are estimated at relatively low
densities, the presence of the gap is of minor importance for these values, as seen from figure 4.

The above theoretical approach was used for computations of the wave patterns and rf
power absorption in various conditions relative to experiment, and for estimations of thresholds
for abrupt density jumps. The results of comparison with experiment are presented in the next
section.

3. Comparison of experimental and theoretical results

Experiments were performed with a 5 cm diameter source attached to a 170 cm long drift
chamber [5, 16, 8]. The length of the discharge tube outside the chamber was 80 cm. The
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Figure 5. Radial density profiles for various discharge regimes at Ar pressures of 51 mTorr (100 G)
and 6 mTorr (500 G). P and AP refer to the parallel and anti-parallel directions of currents in antenna
loops. HD and LD denote the high density mode (in the range of 1013 cm−3) and low density mode
(in the range of 1011 cm−3).

discharge was excited at a frequency of ω/2π = 7 MHz by doublem = 0 antenna, both at the
same and opposite directions of currents in antenna loops. The electron collision frequency
νe � ω at a working Ar pressure of 51 mTorr; νe ≈ ω at 6 mTorr. Data were taken over
a wide range of magnetic fields, 0 to 1000 G, and input powers up to 2500 W. It was found
that at high Ar pressures the variation of plasma density with input power demonstrates abrupt
density jumps, as well as at low pressures [5]. The high density mode in the range of 1013 cm−3

could be attained at input powers of 100 to 1000 W, depending on the magnetic field, relative
directions of the currents in the antenna loops, and gas pressure. Detailed measurements were
conducted of the antenna loading resistance, which also demonstrates jumps, and of axial and
radial profiles and phases of the magnetic field. Antenna loading was defined as input power,
Pin, divided by the square of the effective antenna current. Pin is the difference between the
incident and reflected power derived by a directional coupler, and there were monitors for the
antenna voltage and current. An accuracy of the antenna load resistance obtained in this way
including reproducibility is estimated to be about 10–20%. Experimental results, which are
partly presented in [16], are compared below with computations.

The relevance of the results computed in the uniform plasma approximation is justified
by the fact that the radial density profile in helicon discharge is much more uniform at high
pressures than it is at low pressures. Figure 5 shows several profiles measured for various
regimes. One can see that decrease of density at r = 0.8r0 = 2 cm is less than 40% relative to
the central density, at a high pressure of 51 mTorr and magnetic field of 100 G. Note that profiles
are very similar both in the high and low density modes for anti-parallel currents in antenna
loops. The profile tends to be more peaked with increasing magnetic field and decreasing
pressure. This tendency can be seen from figure 5, where the density profile is substantially
more non uniform at 6 mTorr and 500 G.

To compare the experimental and theoretical results, we consider below, preferentially,
experimental regimes with a relatively high degree of plasma uniformity. Although the plasma
density just near the edge was not measured in these regimes, it is supposed to be high enough
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Figure 6. Comparison of experimental and theoretical axial profiles of the Bz(r = 0) magnetic
field excited with anti-parallel currents in antenna loops. The top and bottom figures correspond
to the low density (before the jump) and high density (after the jump) modes, at pAr = 51 mTorr
and B0 = 300 G.

to give rise to a substantial absorption via edge mode conversion, the efficiency of which is
roughly proportional to the edge density [23]. At low edge density, the surface conversion is
reduced [17, 24], but then the bulk mode conversion provides the efficient absorption. Note
that agreement of our experimental and theoretical results is found to be not so poor even at
reduced radial uniformity.

Figure 6 shows the experimental and computed axial profiles of the Bz field excited by the
double-loop antenna with opposite directions of current, before and after the density jump in
discharge at pAr = 51 mTorr andB0 = 300 G. The radial density profiles in both high and low
density modes are similar to those plotted in figure 5 for the same conditions but B0 = 100 G.
Computations were carried out with the base
z = 160 cm and using lzmax = 300 harmonics.
One can see from figure 6 that in low density mode, at n0 = 2×1011 cm−3, the antenna excites
the evanescenting field. The agreement of theory with experiment is pretty good in this case,
so that the measured magnetic field may be attributed to the excitation via purely inductive
coupling. In the high density mode, at n0 = 1 × 1013 cm−3, theory also yields a proper profile
to the right from the antenna, but the agreement is poor to the left. Such a disagreement is
thought to arise from distortions due to the probe pipe. In the experiment, the pipe is inserted
through a remote end flange located at z = 170 cm and goes along the axis to the left, with
special care taken to keep the probe at the axis (see details in [16]). While the probe is to the
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Figure 7. Comparison of experimental and theoretical dependences on density of the plasma load
resistance for parallel antenna currents. Arrows show the density jumps. Both experimental and
theoretical values of the threshold density (just after the jump) are shown. pAr = 51 mTorr and
B0 = 100 G. In calculations, it is assumed that Te = 4 eV.

right relative to the antenna position, z > za ≈ −20 cm, it disturbs the plasma only slightly.
But when the probe head crosses the antenna region, the probe pipe introduces quite strong
disturbances because it causes the Ez field to vanish at the axis, which is not compatible with
m = 0 excitation. Although theEz field is quite weak as compared with other components, the
disturbances could be so strong in some regimes as to result in breaking the discharge down
when the probe head passes through the antenna region. One more piece of evidence for the
strong disturbances induced by the probe is that the experimental Bz profile in the bottom of
figure 6 is highly non-antisymmetric relative to the antenna midplane. As seen from figure 6,
theory predicts a slightly deeper penetration of the field into the downstream plasma, that is
a slightly higher level of irradiated waves (wave coupling). A probable reason for that is the
uniform plasma approximation.

Comparison of measured and computed load resistances is presented in figure 7, for
pAr = 51 mTorr, B0 = 100 G, and parallel antenna currents. Experimental points are
plotted versus values of density measured at the discharge centre at z ≈ −22 cm. Theoretical
prediction of jump is based on the above discussed arguments (see figure 4). One can see
from figure 7 a good agreement between the experimental value of threshold density (just after
the jump), nth = 1 × 1012 cm−3, and that predicted by theory, nth = 1.2 × 1012 cm−3. At
n0 > 2 × 1012 cm−3, theory predicts the resistance to be higher than the experimental value
by a factor of about 1.5. Theoretical and experimental dependences in figure 7 are closer at
higher densities, around 1 × 1013 cm−3. The improvement of agreement may result from the
fact that the plasma is radially very uniform at high densities, as seen from figure 5.

When comparing theoretical and experimental values of resistance in figure 7 and in the
following figures 8–12, one must bear in mind that calculated the resistance corresponds to
the net plasma absorption, whereas the measured resistance also includes the non-plasma part.
The latter is defined by losses in the circuitry and by those dissipated by currents induced in
the metal environment (end-flanges, magnetic coils, probes, etc). In the absence of plasma,
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Figure 8. The same as in figure 7, but at B0 = 300 G. Experimental threshold density
nth = 2.4 × 1012 cm−3 (not shown).

Figure 9. The same as in figure 7, but at pAr = 6 mTorr. Experimental threshold density
nth = 5.1 × 1011 cm−3 (not shown).

the value of non-plasma losses reaches 0.4–0.5 . [16], but this value is not well defined in
the presence of plasma. Indeed, the plasma gives rise to substantial changes of fields in the
neighbourhood of the metal environment, and thus to changes of the appropriate parts of non-
plasma losses. To get the experimental value of net plasma resistance, one must certainly
reduce the measured load resistance by a few tenths of an ohm, but the exact amount to be
subtracted is not known.

Figure 8 shows computed and measured resistances forpAr = 51 mTorr,B0 = 300 G, and
parallel antenna currents. One can see that, similarly to the previous case, threshold densities for
jump are very close in theory and experiment, and the agreement of resistances is satisfactory
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Figure 10. The same as in figure 7, but for anti-parallel currents in the antenna loops. Experimental
threshold density nth = 5.3 × 1012 cm−3 (not shown).

Figure 11. Comparison of experimental and theoretical dependences on input power of the
plasma load resistance for anti-parallel antenna currents. The arrows show the density jumps.
pAr = 51 mTorr and B0 = 100 G. The theoretical curve was computed at Te = 4 eV.

over all the range of densities. The agreement does not improve at high densities because
measured radial non-uniformity is higher than it was in the previous case of B0 = 100 G.

As can be seen from figure 9, the agreement between threshold densities is within 50% for
the lower Ar pressure of 6 mTorr. Experimental resistance, if reduced by circuitry losses, is
quite well fitted to the theoretical curve over all the range of densities. This is in spite of the fact
that the measured density is radially very non uniform in this case, so that resistance computed
in the uniform model is expected to exceed the experimental value. For pAr = 51 mTorr,
B0 = 100 G, and anti-parallel antenna currents, threshold densities agree within 30%, and
computed values of the resistance are close to the experimental ones (see figure 10). This is as
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Figure 12. The same as in figure 11, but for parallel antenna currents and B0 = 300 G. Broken
curves with arrows show the three density jumps predicted by theory.

expected, because the measured density is quite uniform, as seen from figure 5. One can see
from figures 7–10 that both experiment and computation show the tendency of the threshold
density to increase with magnetic field and gas pressure. Thresholds for jumps turn out to be
higher with the use of anti-parallel currents, which excite shorter waves. This tendency is in
agreement with (12).

We also compared the experimental and theoretical dependences of plasma resistance on
input power. As long as plasma losses are not specified in our model, the absolute value of
the absorbed power is also not specified. For this reason, we use for comparison the values
of input power, for experiment, and absorbed power, for theory, both normalized by threshold
powers for the density jump, Pth. Figure 11 shows the plasma resistance versus normalized
power for the same conditions as in figure 10. The variation of resistance with power is smooth
after a jump. The plot in figure 12 is for the same conditions as in figure 8. As long as the
dependence of resistance on density turns out to be non-monotonic in this case, theory predicts
two additional jumps within the high density mode. However, it is not clear whether these
jumps could be observed in the experiment.

Predictions of density jumps were based on the assumption that plasma losses in the
discharge scale linearly with density, Ploss = αn0. That assumption was theoretically justified
in [13] for radial losses, which are expected to be dominant in a long discharge at high pressures.
To verify if it is so in our experiments, we plotted in figure 13 a number of experimental points
for the discharge atpAr = 51 mTorr in various regimes. As can be seen, the variation of density
with input power is nearly linear in the high density mode (n0 > nth, Pin > Pth). That means
that losses are also linear with density, as a result of the balance condition, Pin = Ploss. The
only well scattered point in figure 13 is related to very high input power, when the nonlinear
effects are expected to be important.
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Figure 13. Experimental data on normalized plasma density against input power, for various
discharge modes and conditions. The full line corresponds to n0/nth = Pin/Pth. P and AP refer
to the parallel and anti-parallel directions of currents in the antenna loops.

4. Conclusion

A gradual increase of input power stimulates an abrupt density jump in helicon discharge at
high Ar pressures (νe � ω) as well as at low pressures (νe � ω). Thresholds for jumps on
power and density increase with magnetic field and gas pressure. They are also higher with
anti-parallel currents in antenna loops, when axially short waves are excited. This gives, in
principle, the possibility of controlling a discharge by the antenna spectrum. Density jumps
are accompanied by jumps of the plasma load resistance, and by change of the field profiles. At
low densities, in the range of 1010–1011 cm−3, a magnetic field is formed by non-propagating
modes, and is axially monotonically evanescenting over a few centimetres from the antenna.
This is supposed to result from the inductive coupling of the antenna to the plasma. In the
high density mode, in the range of 1012–1013 cm−3, fields penetrate deeper into a downstream
plasma, and have oscillating profiles. This implies that low damped helicon waves exist at the
high pressures under consideration, and can support the wave coupling of the antenna to the
plasma.

A quite simple model, which supposes a uniform density profile and thus takes into
account the mode conversion of helicon waves into electrostatic TG waves at the plasma edge
[8], turns out to satisfactorily explain the experimental results. (Note that at high pressures,
νe > ω, strongly damping TG waves are in fact evanescenting oscillations which exist in
our model near the plasma edge only.) Computed results were found to depend only slightly
on electron temperature (and thus on collision frequency, since νe ≈ νen ∝ Te), and to be
practically independent of Landau damping. Theory yields the profiles of the magnetic field in
a satisfactory agreement with the experiment. It also explains, on the average, to within a factor
of 1.5, dependences of plasma load resistance on plasma density and input power. Using the
power balance arguments permits one to interpret abrupt density jumps in discharge. Theory
predicts a true tendency for jump thresholds, both on density and input power, to increase
with the increase of the magnetic field and gas pressure, and with shortening the wavelengths
excited by the antenna. Computed and experimental values of thresholds agree to within 50%.
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A better agreement is expected when the effect of radial plasma non-uniformity is included
in the theory. For various modes of high pressure discharge we also examined the relation
between inductive and wave coupling, as well as the relative role in absorption of helicon and
TG waves, and will present the results elsewhere.
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