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Full penetration of RF electric fields into magnetized plasmas is expected in order to realize the Lissajous helicon plasma accelerator (LHPA). We

study the electric field penetration in bulk plasma in one-dimensional electrostatic approximation using two analytical models: the matrix sheath

model and the vacuum gap model. An identical formula for the electric field is obtained from the models. The formula is benchmarked by particle-

in-cell (PIC) simulations. The full penetration of the electric field is realized when the relation (q � 0:01) is satisfied, where q is the measure of the

degree of the shielding effect due to plasma density and electron magnetization. # 2012 The Japan Society of Applied Physics

1. Introduction

Electric propulsion1,2) in space applications has been used to
save the amount of propellants owing to its high specific
impulses, which reduce the cost or time for various space
missions. Successful thrusters such as ion or Hall thrusters
have a lifetime which is limited by two factors whichever
shorter one: erosion of electrodes and the lifetime of charge
neutralizers (hollow cathodes).3,4) Therefore, removing the
electrode and the neutralizer enables the extension of the
lifetime of the thruster. Several schemes are proposed for
electrodeless thrusters with helicon plasma sources that can
produce high-density plasmas over a wide range of operating
parameters.5–7) One of the electrodeless thrusters is the
Lissajous helicon plasma accelerator (LHPA),8–12) in which
the thrust is produced by the electromagnetic force (Lorentz
force). Two other helicon plasma-based electrodeless
thrusters use magnetic nozzle (VASIMR13)) and static
electric field (double layer14)) acceleration.

Figure 1 shows a configuration of the Lissajous accel-
eration.8–12) Plasma is generated and accelerated inside the
dielectric tube by RF antennas outside the tube, therefore,
there is no contact between the electrodes and the plasma.
Plasma is generated by a helicon source (not shown in the
figure) in a magnetic field that is produced by a solenoid
coil whose axis is in the z direction. Then the plasma is
transported along the z direction by the axial magnetic field,
as indicated by a thick gray arrow in Fig. 1. The thrust is
produced by the Lorentz force, which is the product of
azimuthal current ( j�) and the radial magnetic field ( j� � Br)
near the end of the solenoid. A key issue is how to produce
the azimuthal current.

The use of a rotating electric field (REF) is proposed to
excite the azimuthal current in the Lissajous acceleration.
The transverse REF vector E?, which rotates at a driving
frequency of ! around the z-axis, is generated by two sets
of planar antennas. Those antennas are connected to RF
power supplies, as shown in Fig. 1. Selection of the applied
frequency in a range specified by !LH (lower hybrid fre-
quency) � ! � !ce (electron cyclotron frequency) implies

immobile ions. Therefore, we consider electron current for
j�. Figure 1(b) shows a cross-sectional plane of the thruster.
It can be shown that the guiding center of a single electron
shows E� B drift motion in a circular trajectory whose
radius is RD ¼ E?=!Bz.

8–12) Here, Bz is the axial component
of the magnetic field. This electron drift is a source of j�.

11,12)

In Figs. 1(c) and 1(d), gray circles indicate the trajectories of
the guiding center for individual electrons. The azimuthal
current is found to be proportional to RD=r0 by integration
of individual electron motions in radially inhomogeneous
plasma whose density peaks on the z-axis.11,12) In fact, a
series of two dimensional PIC simulations showed that j� is
proportional to RD=r0 up to an optimum ratio of �0:4 then
decreases after reaching this optimum value.12) The rise and
fall of j� can be understood qualitatively from Figs. 1(c) and
1(d). For RD=r0 � 1, as shown in Fig. 1(c), the direction
of electron velocity at point P in the figure is random.
Therefore, the contribution from each electron to j� cancels
out. However, for RD=r0 � 1, the degree of cancelation
at point Q is small. The difference in the degree of the
‘‘cancelation effect’’ is accounted by RD=r0 and is respon-
sible for the rise of j�. Whereas, the fall of j� can be
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Fig. 1. (a) Configuration of the Lissajous acceleration. (b) Cross-

sectional view of the thruster with j� . (c) Cross-sectional view of the thruster

in x–y plane with individual electron trajectories for RD=r0 � 1 and

(d) RD=r0 � 1.
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explained by particle loss to the dielectric tube wall. The
number of trajectories that intercept the wall is larger for
RD=r0 � 1 than for RD=r0 � 1. Therefore, a greater number
of electrons are lost to the wall for a larger value of RD=r0.
In an idealized case, it can be shown that the thrust is given
by F / BzðRD=r0Þ2.15,16) Thus, the thrust is expected to
increase with the increase in REF strength at fixed ! and Bz

up to the optimum ratio.15,16) Therefore, the penetration of
REF into dense helicon plasmas is a key issue. The gyration
motion of electrons also produces j� (diamagnetic current).
However, j� of the diamagnetic current is smaller than that of
the current excited by REF at the optimum ratio.

Although acceleration of plasma flow has been observed
in experiments,8–12) the increase in ion velocity was argued
by the increase in plasma temperature. In other words, the
thermal process dominates acceleration. We note here that
the optimum RD=r0 was not achieved in those experiments
owing to the lack of theoretical works as mentioned above.
A parametric survey17) using the analytical thrust model15,16)

showed that the electromagnetic thrust by the Lissajous
acceleration could dominate over the thrust by the thermal
acceleration at an optimum RD=r0. The parameter (RD)
depends on the REF in plasma, which is an unknown
parameter due to the shielding by the plasma. In order to
design experiments at an optimum RD=r0, the REF strength
in plasma should be determined prior to the experiments.
Therefore, a simple theoretical model that can be used to
estimate the REF strength in plasma is demanded.

In this paper, the electric field penetration into magnetized
plasma is evaluated using a one-dimensional (1D) analytical
model, which is the electrostatic matrix sheath model similar
to that discussed in ref. 18. The electric field is obtained
as the function of q, which accounts for the degree of
shielding for the electric field in magnetized plasma with
a cold electron fluid. The problem is also considered using
the analytical vacuum gap model, where the sheaths are
replaced by ‘‘effective’’ vacuum gaps. This model is similar
to that used in refs. 9 and 11, but accounts for gap widths
self-consistently, by setting them equal to an excursion
length of the electron polarization drift. Both analytical
models are shown to yield identical results. Finally, the
problem is examined by 1D PIC simulations, and the results
are found to be consistent with those obtained using the
analytical models.

2. Electric Field Penetration Models

In LHPA, the electric field is a rotating vector with both
the x and y components. Here, as the first-order approach
to evaluate the field penetration, we consider 1D models
neglecting the rotation.

2.1 Electrostatic matrix sheath model

The geometry of this model is shown in Fig. 2. A slab of
neutral plasma (ne ¼ ni ¼ n0 ¼ constant, where ni and ne
are the ion and electron densities, respectively) is placed
between two RF antennas that are powered by harmonic
RF potentials �ðV0=2Þ sin!t and are spaced at a distance
of L. There are ion sheaths (ni ¼ n0, ne ¼ 0) of variable
widths [s1;2ðtÞ] between the plasma and the RF antennas. The
system is immersed in a uniform strength of ambient
magnetic field Bz. Note that this model is similar to that used

in ref. 18 for capacitively coupled discharge. However, our
approach differs from that in ref. 18 in that we assume that
the applied potential, rather than the current, is harmonic.

To find the RF potential, one has to solve Poisson’s
equations: in the sheath,

� @

@x
"0

@�s

@x

� �
¼ en0;

� L

2
� x < x1ðtÞ and x2ðtÞ < x � L

2
; ð1Þ

and in the plasma,

� @

@x
"0

@�p

@x

� �
¼ 0; x1ðtÞ � x � x2ðtÞ; ð2Þ

with e and "0 being the electron charge and the vacuum
permittivity, respectively. Here, the origin of the x
coordinate is set in the middle of the RF antennas, so that
the plasma boundaries are positioned at x1ðtÞ ¼ �L=2þ
s1ðtÞ and x2ðtÞ ¼ L=2� s2ðtÞ. The solutions of eqs. (1) and
(2) are as follows:

�s1ðxÞ ¼ ��
x2

2
þ C1xþD1; � L

2
� x < x1ðtÞ; ð3Þ

�s2ðxÞ ¼ ��
x2
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2
; ð4Þ

�pðxÞ ¼ Apxþ Bp; x1ðtÞ � x � x2ðtÞ; ð5Þ
where � ¼ en0="0. The joining conditions at plasma
boundaries are the following:

�s1ðx1Þ ¼ �pðx1Þ; �s2ðx2Þ ¼ �pðx2Þ; ð6Þ
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The system of equations is closed by setting potentials of
the RF antenna as a known function, V ðtÞ.
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The electric fields in the plasma and sheath take the form

Ep ¼ 1
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Fig. 2. Schematic of the electrostatic matrix sheath model.
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Here, Es1 and Es2 are electric fields in the sheaths. Next,
the sheath widths s1 and s2 are required in order to estimate
the electric field.

The plasma width is found to be constant from a
consideration of current conservation in the system in the
following discussion. Taking the divergence of Maxwell
equation in the 1D geometry leads to a conclusion that
dictates that the total current is conserved in the system:

r 	 ðr �HÞ ¼ r jþ "0
@E

@t

� �
¼ 0: ð11Þ

Therefore, the current flowing into or out of the plasma
through the sheaths should be cancelled:18)

"0
@E1

@t

����
x¼�L=2

¼ "0
@E2

@t

����
x¼L=2

: ð12Þ

The convection current is set at zero since no electrons are in
the sheath and ions are immobile. The substitution of the
electric fields from eq. (10) into eq. (12) yields

@

@t
�ðs1ðtÞ þ s2ðtÞ � LÞ ¼ 0: ð13Þ

Therefore, the width of plasma is constant for a uniform
density. We further assume a harmonic motion of the
sheath and a sinusoidal RF voltage drive. As shown in
the Appendix, under the condition !ce > !, the phase of
the sheath motion should be set as follows:

s1ðtÞ ¼ s0ð1� sin!tÞ;
s2ðtÞ ¼ s0ð1þ sin!tÞ; ð14Þ
V0ðtÞ ¼ V0 sin!t:

Substituting eq. (14) into eq. (9) yields

Ep ¼ 1

L
V0 � 2ens20

"0

� �
sin!t: ð15Þ

In this model, all plasma electrons move as a rigid box, as
long as the plasma field, eq. (15), is coordinate-independent,
i.e., uniform. Consider the motion of the electron positioned
at the left plasma boundary, i.e., with the coordinate
xðtÞ ¼ �L=2þ s1ðtÞ and the x-component of the velocity
vx ¼ ds1=dt. Newtonian equations of its motion take the
form

d2s1
dt2

¼ � e

m
Ep � !cevy; ð16Þ

dvy
dt

¼ !ce
ds1
dt

: ð17Þ
Here, m is the electron mass, !ce ¼ eBz=m is the elec-
tron cyclotron frequency, and vy is the transverse electron
velocity (similar equations can be obtained for s2). The
solution of eq. (17), with the initial condition vyð0Þ, is
vy ¼ !ces1 � !ces0. Substituting this vy and eq. (9) into
eq. (16) yields

d2s1
dt2

¼ � e

mL
V0 sin!t þ en

"0

s21 � s22
2

� �

� !2
ceðs1 � s0Þ: ð18Þ

Substituting eq. (14) into eq. (18) yields an equation for
s0

2!2
pes

2
0 þ ð!2

ce � !2ÞLs0 � eV ðtÞ=m ¼ 0: ð19Þ

The solution of this is

s0 ¼ L
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where " ¼ 1� !2=!2
ce and

q ¼ 8
!2
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� ¼ e

m!2
ce
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Here, the plasma frequency is given by !pe ¼ ðn0e2=m"0Þ1=2.
We consider the frequency range !ce 
 !, thus " � 1.
Substituting eq. (20) into eq. (15), the amplitude of the
electric field in the plasma is obtained as

Ep0

V0=L
¼ 2"

q
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
"2 þ q

p
� "Þ: ð23Þ

Here, the amplitude is defined as EpðtÞ ¼ Ep0 sin!t. In
eq. (23), V0=L is the amplitude of vacuum electric field
without plasma. The amplitude of the field monotonically
decreases with the increase in q, as shown in the latter.
Electric field strength is governed by the dimensionless
parameter q. For q � 1, the field strength is nearly equal
to the strength obtained without plasma (Ep0 � V0=L).
For q 
 1, the field is weak and scales as EpðtÞ / 1=

ffiffiffi
q

p
.

The parameter q represents the two following effects. The
first is the shielding of the applied electric field by ion
sheaths. When the total charge in the ion sheaths is large,
electric field becomes weak in the plasma. When plasma
density increases, the sheath width falls as s0 / 1=

ffiffiffi
n

p
for

q 
 1, as seen from eq. (20) at other fixed parameters. The
ion density in the sheaths grows linearly. The total charge
in the ion sheaths scales as s0n / ffiffiffi

n
p

; therefore, the elec-
tric field is expected to become weaker. Second, when
the magnetic field increases, at other fixed parameters, q
decreases with the simultaneous decrease in electron
mobility across the magnetic field. In consequence, sheath
width decreases resulting in the weakening of the shielding
effect of the sheaths and the increase in electric field within
plasma.

2.2 Vacuum gap model

In this model, the configuration of the system is similar to
that shown in Fig. 2, but the ion sheaths are replaced by the
‘‘effective’’ vacuum gaps of equal, fixed widths s1 ¼ s2 ¼ sg.
The vacuum gaps are determined self-consistently. The
plasma is described by an electric displacement Dx ¼ "?Ex,
where

"? ¼ 1� !2
pe

!2 � !2
ce

ð24Þ

is a perpendicular component of the cold-plasma dielectric
tensor.19) The other field components, Ey and Ez, are
assumed to be zero.

To find the fields, we solve Poisson’s equation: in the
sheath

� @

@x
"0

@�s

@x

� �
¼ 0;

� L=2 � x < x1g and x2g < x � L=2; ð25Þ
and in the plasma,
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� @

@x
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@�p

@x

� �
¼ 0; x1g � x � x2g ð26Þ

where x1g ¼ �L=2þ sg and x2g ¼ L=2� sg are the coordi-
nates of plasma–gap boundaries. The continuity of potential
and electric displacement is assumed throughout the system,
and the same boundary conditions are applied as in eqs. (6)
and (8), but with x1,2g instead of x1;2. The boundary
conditions for the electric displacement are modified from
eq. (7) to

@�s1

@x

����
x1g

¼ "?
@�p

@x

����
x1g

;
@�s2

@x

����
x2g

¼ "?
@�p

@x

����
x2g

: ð27Þ

Solving eqs. (25) and (26) using with the boundary con-
ditions yields the electric field in the plasma:

Ep ¼ V ðtÞ
L

1

1þ 2ð"? � 1Þsg=L : ð28Þ

The sheath width sg is set to the amplitude of electron
polarization drift excursion length, whose derivation is given
as follows. Polarization drift velocity is written for our
configuration as20)

vp ¼ � e

m!2
ce

dEp

dt
: ð29Þ

Setting this velocity to be equal to sheath velocity
(dsg=dt ¼ vp) yields the expression for sheath width,

sg ¼ � eEp

m!2
ce

: ð30Þ

Under the condition (!pe 
 !ce 
 !), a similar equation to
eq. (19) is obtained by substituting eq. (30) into eq. (28):

2!2
pes

2
g þ !2

ceLsg �
eV ðtÞ
m

¼ 0: ð31Þ

In order to obtain an electric field in the plasma, the solution
of eq. (31) is substituted into eq. (30) to yield

Epg0

V0=L
¼ 2

q
ð

ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
� 1Þ: ð32Þ

Here, q is defined by eq. (21). Note that eq. (32) is identical
to eq. (23) under the condition (!ce 
 !). Therefore, the
electrostatic matrix sheath model and the vacuum gap model
yield identical expressions for the electric field in the mag-
netized plasma in the practical parameter range (!ce 
 !).
The vacuum gap model is easily extended to inhomogeneous
plasmas using spatially dependent plasma dielectric tensors
"?ðxÞ with a sheath width equal to the electron polarization
drift excursion length at the plasma–gap boundary.

The vacuum gap model is similar to the one used by
Bekefi in his textbook for the case of no magnetic field.21) In
an approximation of a fixed vacuum gap width, S, Bekefi has
found a ‘‘geometrical’’ resonance (infinite plasma field) at a
driving frequency: ! ¼ !pe

ffiffiffiffiffiffiffiffiffiffiffi
2S=L

p
(geometrical resonance

frequency). We found a geometrical upper hybrid resonance
at a frequency of !guh ¼ ½!2

ce þ !2
peð2S=LÞ�1=2 by applying

this approximation to a magnetized plasma. However, the
vacuum gap model discussed above does not show any
resonances because gap width is not fixed but is chosen self-
consistently, equal to the electron polarization drift excur-
sion length.

3. PIC Simulations for Electric Field Penetration

The electric field strength obtained using the analytical
model is compared with the results of 1D PIC simulations
using the VORPAL code.22) The configuration of simulation
is shown in Fig. 3. The frequency is set at !=2� ¼ 10MHz
for n0 ¼ 1017 m�3, which is considered to be appropriate
for LHPA.16,17) For densities of n0 ¼ 1018 and 1019 m�3, the
driving frequency is set at 100MHz in order to save
computational time. The amplitude of potential is set at the
right RF antenna, which is given as V0 in Table I. The rise
of the temporal waveform for potential is smoothed using a
function [V0ðtÞ ¼ V0 tanhðt=�0Þ sin!t]. The rise time of �0 is
one-tenth of the RF period. The potential of the left RF
antenna is set at zero. The distance between RF antennas is
fixed at L ¼ 0:01m. The magnetic field is varied in order to
change q. Table I shows the values of RD=r0, which are
given by the thruster radius of r0 ¼ L=2 and eq. (32) for E?.
The estimated values of E? are listed as Epg0=ðV0=LÞ. The
simulation results are shown in Table I as jEp=E0j, which is
obtained by a method described later. The numerical time
step and the spatial step are set at one-tenth of plasma wave
period and Debye length, respectively. The number of
spatial grids is changed according to plasma density; the
numbers are given in Table II. The simulation is run for 5
RF periods. Equal numbers of Ar ions with a charge state of
1 and electrons are placed in the simulation domain at the
beginning of each simulation run. The ion and electron
temperatures are 0.3 and 5 eV, respectively. Both energy
distribution functions are assumed to be Maxwellian
initially. The absorption boundary is set on the RF antenna
surface for all particles. The superparticle number is fixed at
1000 per cell for simulations at a density of 1017 m�3. The
superparticle number per cell is varied from 200 (1,000)
to 1,000 (10,000) for simulations at a density of
1018 ð1019Þm�3, and the results are not affected by the
number of superparticles. This indicates a negligible
influence of numerical heating on simulation results. We
confirm that plasma density for all simulations remains
practically constant and uniform during all runs. This fact
ensures validity of the uniform plasma assumption.

The amplitude of electric field in the plasma at the driving
frequency is compared with the theoretical curve, which is
given by eq. (32) in Fig. 4. The amplitudes are also listed in
Table I. Field strength is obtained from Fourier analysis for
the temporal waveforms of the electric field. Electric field
strength is spatially averaged over x ¼ 0:05L to 0:95L in
order to eliminate the strong electric field in the sheath
region before the Fourier analysis. The amplitude of field
strength in the absence of plasma (E0) is estimated by the

0.01 m

Plasma
Bz

x

y

RF antenna

V(t)

Absorption boundary for particles

RF 
antenna

Fig. 3. Configuration of simulations.
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same procedure described above. The error bar is estimated
by an equation jEð!nÞ=E0ð!0Þj2 where the spectral noise is
estimated at the frequency !n ¼ 0:7!0. The theoretical
curve of eq. (32) is also plotted in Fig. 4, and is found to
be insensitive to plasma density. Estimated values from
PIC simulations show a good agreement with the analytical
prediction. In Fig. 4(a), the simulation results from
n0 ¼ 1017 m�3 are shown for three values of RD=r0. Electric
field strength decreases with the increase in q. A nearly full
penetration of electric field is expected when q is smaller
than 0.01 for all three values of RD=r0. In Fig. 4(b), the
simulation results for n0 ¼ 1018 and 1019 m�3 are shown.
Equation (32) also reproduces simulation data points for
high densities.

The influence of temperature was examined for a fixed
RD=r0 ¼ 0:4 (other parameters are the same as those shown
in Table I). A slight difference was observed between
simulation data points for Te ¼ 5 eV [Fig. 4(a)] and Te ¼
0:5; 50 eV (data not shown). The root mean square (RMS)
difference from Te ¼ 5 eV data points was �5%. Changing
ion temperature to 3 eV for Te ¼ 5 eV showed an RMS
difference of 10% (data not shown). It is unlikely that
electric field penetration is affected by temperature, as
determined on the basis of the results of those additional
simulations.

Simulation findings lead to a conclusion that the full
penetration of electric field can be expected for the optimum
acceleration condition (RD=r0 ¼ 0:4) when q is kept below

Table I. Simulation parameters I.

!=2�

(MHz)

V0

(V)

B

(T)

n0
(m�3)

RD=r0 q
Epg0

V0=L

jEp=E0j
simulation

10 31.04 0.01 1017 0.4 14.5 0.4048 0:29� 0:06

10 29.75 0.02 1017 0.4 0.870 0.8448 0:71� 0:06

10 63.57 0.05 1017 0.4 4:76� 10�2 0.9884 0:94� 0:10

10 125.85 0.1 1017 0.4 5:89� 10�3 0.9985 1:01� 0:09

10 251.4 0.2 1017 0.4 7:35� 10�4 0.9998 1:03� 0:09

10 4.296 0.01 1017 0.1 2.01 0.7312 0:68� 0:07

10 6.572 0.02 1017 0.1 0.192 0.9561 0:86� 0:05

10 15.75 0.05 1017 0.1 1:18� 10�2 0.9971 0:95� 0:11

10 31.43 0.1 1017 0.1 1:47� 10�3 0.9996 1:01� 0:09

10 62.83 0.2 1017 0.1 1:84� 10�4 1.000 1:02� 0:09

10 0.3257 0.01 1017 0.1 0.152 0.9645 0:74� 0:12

10 0.6312 0.02 1017 0.01 1:85� 10�2 0.9954 0:83� 0:19

10 1.571 0.05 1017 0.01 1:18� 10�3 0.9997 0:93� 0:23

10 3.142 0.1 1017 0.01 1:47� 10�4 1.000 1:03� 0:04

10 6.283 0.2 1017 0.01 1:84� 10�5 1.000 1:04� 0:05

100 10 0.01 1018 7:15� 10�3 46.8 0.2527 0:12� 0:06

100 10 0.02 1018 1:05� 10�2 2.92 0.6709 0:42� 0:02

100 10 0.03 1018 9:38� 10�3 0.578 0.8865 0:68� 0:01

100 10 0.1 1018 3:18� 10�3 4:68� 10�3 0.9988 0:96� 0:01

100 10 0.01 1019 2:47� 10�3 4:68� 102 0.08828 0:12� 0:04

100 10 0.03 1019 5:84� 10�3 5.78 0.5550 0:44� 0:06

100 10 0.1 1019 3:15� 10�3 4:68� 10�2 0.9886 0:98� 0:03

Table II. Simulation parameters II.

!=2�
(MHz)

n0
(m�3)

Number

of spatial

grids

Number

of time

steps

Time step

(ps)

10 1017 190 14196 35

100 1018 601 4489 11

100 1019 1903 14196 3.5

RD/r0 = 0.4

RD/r0 = 0.1

RD/r0 = 0.01

(a)

1018 m-3

1019 m-3

(b)

Fig. 4. Electric field strength as a function of q. (a) Simulation data points

are shown for n0 ¼ 1017 m�3. The solid black, solid gray, and open

diamonds show results for RD=r0 ¼ 0:4, 0.1, and 0.01, respectively.

(b) Simulation data points are shown for n0 ¼ 1018 ð1019Þm�3 by solid

(open) circles. The black curves are calculated from eq. (32).
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0.01. This conclusion is useful for extracting scaling laws
and designing experiments.

The frequency spectra of electric field in plasma are
shown in Fig. 5. In all simulations, we observe two to three
peaks in a spectrum. The first peak arises at the driving
frequency (100MHz), except for a data point at (ne ¼
1019 m�3, Bz ¼ 0:01T), for which the intensity at the
driving frequency is comparable to the intensity in the
frequency range from 500MHz to 1GHz. The second
peak near 10GHz in Fig. 5(a) [near 30GHz in Fig. 5(b)] is
observed even when the RF voltage is set to zero; it is
identified with normal upper hybrid resonance oscillations
at the frequency !uh ¼ ð!2

ce þ !2
peÞ1=2. The third peak

(labeled as ‘‘GUH’’ in the figure) is seen in the frequency
range between 600 and 900MHz in Fig. 5(a). It is identified
as the geometrical upper hybrid resonance (GUH) men-
tioned in x2.2, which was shown by modeling a nonsta-
tionary matrix sheath.23) The numerical solution for the
nonstationary matrix sheath model with electron collisions
included, and other parameters as in Fig. 5(a), showed that
the GUH resonance oscillations damp in 2–3 RF cycles.
No clear GUH oscillations are observed in the simulations
for a plasma density of 1019 m�3, possibly owing to a
greater statistical noise than for a plasma density of
1018 m�3. The normal upper hybrid and the GUH resonance
oscillations that arise at frequencies well above the driving
frequency are damped owing to collisions for actual
plasmas, and are thus expected to weakly influence the
RF field penetration.

4. Discussion

Four issues are discussed in this section. First, the validity
of the electrostatic approximation is considered. When the
relation N2 
 j"ijj is satisfied for a given parameter range,
the electrostatic approximation is valid.24) Here, N is the
refractive index of plasma and "ij is the dielectric tensor of

cold plasmas. We confirmed that the relation (N2 
 j"ijj) is
satisfied for all simulation runs in Table I.

Second, in generating the j� component, a radially
nonuniform plasma density is required as shown in refs. 11,
12, 15, and 16. However, in the model presented here,
uniform plasmas are assumed. For a density profile peaking
on the axis, the strength of REF would increase as compared
with the case of a constant plasma density. This increase
is due to the decrease in the plasma density at the edge of
the plasma. In order to obtain an absolute value, the radial
inhomogeneity should be taken into account in the present
model.

Third, the collisions would influence the electric field
penetration when collision frequency approaches ! for high
plasma densities and/or high neutral densities. Therefore,
the effect of collisions should be considered.

Fourth, the influence of finite length in the y direction
is discussed. One-dimensional geometry is assumed in this
paper. In the actual LHPA, the spatial dimension in the y
direction is finite. A greater number of electrons could be
lost to the dielectric tube than in the analysis in this paper.
Relevant time scales of the problem will be compared. As is
described in the introduction, an electron executes a circular
motion at a radius of RD with a frequency of !. The electron
whose trajectory intercepts the dielectric tube is lost.
Therefore, the time scale of particle loss due to the E� B
drift motion is the period of the RF fields. We found that the
temporal waveform of a spatially averaged electric field is
almost identical with that without plasma under the con-
ditions where full penetration is observed, jEp=E0j � 1. This
observation indicates that the time scale of the electric field
penetration is much shorter than the RF period; therefore, the
particle loss in the y direction unlikely affects the penetration
condition. However, the electric field spatial distribution
would be affected by changes in dimensions. For quantita-
tive analysis, we need two- and three-dimensional simula-
tions, which are beyond the scope of this paper.

5. Conclusions

In this paper, a one-dimensional RF sheath model in the
electrostatic limit is developed in order to evaluate the
parameter range within which a high electric field is
available for LHPA. The electric field strength obtained
from the model is consistent with that obtained from the
1D particle-in cell (PIC) simulations. The electric field is
obtained as a function of q, which characterizes the degree
of the shielding effect due to plasma density and electron
magnetization. The electric field in the magnetized plasma
depends on sheath width, which is found to be an excursion
length of the electron polarization drift. It is found that the
full penetration of electric field can be achieved for the
optimum condition of LHPA when q is kept below 0.01.
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Appendix

The Newtonian motion equation of an electron in the field
Ep ¼ E0 sin!t is given by

GUH

(a)

(b)

Fig. 5. (Color online) Simulated power spectra of electric field

normalized by the peak value of vacuum field at the driving frequency of

100MHz for (a) ne ¼ 1018 m�3, B ¼ 0:01T and (b) ne ¼ 1019 m�3,

B ¼ 0:03T. Other parameters are given in the text. (a) shows spectra for

without plasma (red dashed), with plasma for 1,000 particles/cell (black

solid), and with plasma for 200 particles/cell (gray dotted). (b) shows the

spectra for the same condition as in (a) and, in addition, the case with

plasma for 10,000 particles/cell (gray dotted).
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dvx
dt

¼ � e

m
E0 sin!t � !cevy; ðA	1Þ

dvy
dt

¼ !cevx: ðA	2Þ

The harmonic solutions to these equations are

vx ¼ � eE0!

mð!2
ce � !2Þ cos!t; ðA	3Þ

vy ¼ � eE0!c

mð!2
ce � !2Þ sin!t: ðA	4Þ

Considering that _s1 ¼ vx, the solution for the sheath width
is obtained as

s1ðtÞ ¼ � eE0

mð!2
ce � !2Þ sin!t þ

eE0

mð!2
ce � !2Þ : ðA	5Þ

Equation (A	5) can be rewritten in the form

s1ðtÞ ¼ s0½1� signð!2
ce � !2Þ sin!�: ðA	6Þ

Here, we define s0 as

s0 ¼ eE0

mð!2
ce � !2Þ

����
����: ðA	7Þ

The expression signð!2
ce � !2Þ is 1 (�1) for !ce > !

(!ce < !).

1) R. G. Jahn: Physics of Electric Propulsion (MacGraw-Hill, New York,

1968) Chap. 1, p. 2.

2) K. Kuriki and Y. Arakawa: Denkisuishin Roket Nyuumon (Introduction to

Electric Propulsion) (University of Tokyo Press, Tokyo, 2003) Chap. 1,

p. 11 [in Japanese].

3) Y. Arakawa, H. Kuninaka, Y. Nakayama, and K. Nishiyama: Ion Enjin

niyoru Doryoku Koko (Ion Engines for Powered Flight in Space) (Corona

Publishing, Tokyo, 2006) Chap. 1, p. 10 [in Japanese].

4) Dan M. Goebel and I. Katz: Fundamentals of Electric Propulsion: Ion and

Hall Thrusters (Wiley, Hoboken, NJ, 2008) Chap. 5, p. 225.

5) J. Gilland: AIAA-1998-3934.

6) S. Shinohara, T. Hada, T. Motomura, K. Tanaka, T. Tanikawa, K. Toki, Y.

Tanaka, and K. P. Shamrai: Phys. Plasmas 16 (2009) 057104.

7) C. Charles: J. Phys. D 42 (2009) 163001.

8) K. Toki, S. Shinohara, T. Tanikawa, I. Funaki, and K. P. Shamrai: Proc.

28th Int. Electric Propulsion Conf., 2003, IEPC 03-0168.

9) K. Toki, S. Shinohara, T. Tanikawa, and K. P. Shamrai: AIAA-2004-3935.

10) K. Toki, S. Shinohara, T. Tanikawa, T. Hada, I. Funaki, K. P. Shamrai, Y.

Tanaka, and A. Yamaguchi: J. Plasma Fusion Res. 8 (2009) 25.

11) K. Toki, S. Shinohara, T. Tanikawa, T. Hada, I. Funaki, Y. Tanaka, A.

Yamaguchi, and K. P. Shamrai: JAXA-SP-08-013, p. 73 [in Japanese].

12) H. Nishida, S. Shinohara, T. Tanikawa, T. Hada, I. Funaki, T. Matsuoka,

K. P. Shamrai, and T. Motomura: AIAA-2010-7013.

13) F. R. Chang Dı́az: Sci. Am. 283 (2000) 90.

14) X. Sun, A. M. Keesee, C. Biloiu, E. E. Scime, A. Meige, C. Charles, and

R. W. Boswell: Phys. Rev. Lett. 95 (2005) 025004.

15) T. Matsuoka, I. Funaki, T. Nakamura, K. Yokoi, H. Nishida, K. P. Shamrai,

T. Tanikawa, T. Hada, and S. Shinohara: Plasma Fusion Res. 6 (2011)

2406103.

16) T. Matsuoka, T. Nakamura, K. Yokoi, T. S. Rudenko, I. Funaki, H.

Nishida, K. P. Shamrai, T. Tanikawa, T. Hada, and S. Shinohara: Proc. Int.

Symp. Space Technology and Science, 2011, ISTS2011-b-09.

17) S. Satoh, T. Matsuoka, T. Fujino, and I. Funaki: AIAA-2011-4008.

18) M. A. Lieberman and A. J. Lichtenberg: Principles of Plasma Discharges

and Materials Processing (Wiley, Hoboken, NJ, 2005) 2nd ed., Chap. 11,

p. 388.

19) T. H. Stix: Theory of Plasma Waves (AIP, New York, 1992) p. 7.

20) F. F. Chen: Introduction to Plasma Physics and Controlled Fusion

(Plenum Press, New York, 1984) 2nd ed., Chap. 2, p. 39.

21) G. Bekefi: Radiation Processes in Plasmas (Wiley, New York, 1966)

Chap. 5, p. 168.

22) http://www.txcorp.com/products/VORPAL/

23) T. S. Rudenko, K. P. Shamrai, T. Matsuoka, I. Funaki, and S. Shinohara:

Annual Rep. 2011, Institute for Nuclear Research, NAS of Ukraine

(Kiev, 2012) p. 105.

24) T. H. Stix: Theory of Plasma Waves (AIP, New York, 1992) p. 54.

T. Matsuoka et al.Jpn. J. Appl. Phys. 51 (2012) 096201

096201-7 # 2012 The Japan Society of Applied Physics

http://dx.doi.org/10.1063/1.3096787
http://dx.doi.org/10.1088/0022-3727/42/16/163001
http://dx.doi.org/10.1103/PhysRevLett.95.025004
http://dx.doi.org/10.1585/pfr.6.2406103
http://dx.doi.org/10.1585/pfr.6.2406103

