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Estimation of Electric Fields from Magnetic Field Distributions and an Application

to Helicon Wave
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General formulae of electric fields of the arbitrarily excited waves are derived from magnetic field distributions
in a cylindrical cold plasma for experimental use. As an example of an application, explicit expressions of the
electric fields, including wave energy density and energy flux of the helicon wave, are presented.
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A great variety of waves can be excited in a plasma
and wave phenomena can be categorized in many ways—
as electrostatic or electromagnetic waves; waves prop-
agating parallel or perpendicular to a static magnetic
field; wave frequency and wavelength compared with a
characteristic frequency and scale length, respectively—
and also by various boundary conditions (see also the
Clemmow-Mullaly-Allis (CMA) diagram).? Although
wave magnetic fields B in relatively low-temperature
plasmas can be easily and directly measured, using mag-
netic probes for instance, excited electric fields E with
time-varying components (more than MHz frequency
range), which contain inductive (electromagnetic) as well
as space charge (electrostatic) terms, are much more dif-
ficult to measure experimentally.? Since poor knowledge
of the electric fields E results in a correspondingly poor
understanding of wave natures, reliable methods to es-
timate the E fields are of crucial importance. If the
magnetic and electric fields are known, wave character-
istics such as excited wave structures, absolute values of
wave energy and energy flux can be obtained.

In this letter, we propose a method of deriving general
formulae of F (electromagnetic component) from known
data of B in a cylindrical plasma. Since only the cold
plasma dispersion relation and Maxwell’s equations are
used in this calculation, the obtained result is a general
one for arbitrary excited waves. As an example of one
application, explicit expressions of F (from B), wave
energy density W and wave energy flux § are presented
for the helicon wave®® case. The use of helicon waves to
produce a high-density-plasma source has become very
attractive in confinement devices as well as in plasma
processing of materials, and detailed knowledge of the
nature of waves from the viewpoint of the. plasma pro-
duction mechanism, including plasma initiation, is essen-
tial. .

First, we will derive general formulae for the excited
electric fields. Using international system (SI) mks units,
a cold plasma dielectric tensor K can be represented by%
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where each element is defined as
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In addition, the following notations are used: w, wave
angular frequency; e,, dielectric constant in the vacuum;
m;, mass; n;, number density; ¢;, charge; ;, sign of the
charge; B,, static magnetic field along the z direction.

Using time-varying electric and magnetic fields of e~i«*
and Maxwell’s equation of V x B = p,(8D/0t) (pe:
permeability in the vacuum, D: electric displacement)
in the cylindrical (r, 8, z) coordinate, the electric fields
are written in terms of the magnetic fields as
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where ¢ is a velocity of light. Even though the electric
fields are strongly affected by the boundary conditions
in some cases, eq. (3) is still valid, since the magnetic
fields obtained inherently satisfy these conditions. When
the electric fields are measured independently by some
means, these estimated electric fields can be used for
checking the reliability of the experimental data.

The wave energy density W is defined in two ways

as
1 B* B X, — 3
o 1 o « 8 2
=5 Re [EE waw(w Kw) E] , (4)

where the asterisk, Re and K, indicate a complex con-
jugate, real part and Hermitian part of the dielectric
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tensor, respectively.

The energy flux S, composed of the Poynting vector
P and the nonelectromagnetic energy flux T due to co-
herent particle motions, is given by the following equa-
tions.)

S=P+T,
P:iRe(E* x B),
210

_ W O
T=-—F o5 Ke - B (5)

Therefore, the energy density W and energy flux S can
be estimated generally by using magnetic fields data and
electric fields derived from eq. (3).

Next we will apply this method to the helicon wave,
in which B and E are proportional to e(k=z+mo=wt) (f .
parallel wave number, m: azimuthal mode number).?
ASSUMIDE Wy € W K Weey W K Wpe and wwee K w2,
(m. < m;, composition of electrons and one species of
ions) from eq. (3), the E fields become

2
E'r = Wee ( c ) (Zsz’r - 8—Bi) ]
Whe or
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¢\’ [m 10
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From these equations, it can be seen that F, can be
neglected when w/27 is several MHz and By is larger
than several 107 T since E, ~ Ej ~ (Wee/w)E., as long
as no wave damping occurs. If there is a flat density
profile in this (no damping) case, the helicon wave fields

are written as®
B, = CiJp_y + Codra,
By = i(CyJm_1 — Codpmyr),
B, = Cydp, (7N
and
E, = (w/k.)Bo,
By = ~(w/k.)B.,
E.=0, (8)

where C;, C, and C; are as defined in ref. 4 and T (yr)
is a Bessel function (k,: transverse wave number).
Under typical experimental conditions, however, the
collision frequency v becomes large (v/w > 0.1 and the
observed E, is not neglected!®) when the electron den-
sity m. is more than about 10* em™, the electron tem-
perature T}, is several eV and the wave frequency w /27 is
on the order of several MHz. Since collisional damping
cannot be neglected in this case, m. in w,, and w,, in
eq. (2) must be replaced by (1 +iv/w)m, to give k, +1kq
(kq: damping wave number along the z axis). In ad-
dition, for the case when electron Landan damping be-
comes large, v in K is needed to give vpp + v, where
vp = 21%w(w/k,v.)® exp(—w?/k2v7.) and v, is the
electron thermal velocity.?: Note that for this damping
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case, E, and Fy in eq. (6) remain the same, while w must
be replaced by w + (v + vpp) in E..

For the helicon wave, the boundaries are highly impor-
tant and may force the plasma to generate a relatively
large electrostatic field, which causes some difficulty in
deriving E from B fields because the B fields become
small. Tt is considered for the low wave damping case
that the ratio of electrostatic to electromagnetic compo-
nents is high (~ k, /k.) near the plasma surface, becomes
nearly one at the plasma center and takes a very small
value (< 1) at the intermediate region, for m = 1 and
m = —1 excitation. However, this ratio may be large
(on the order of ky /k,) over the whole plasma region for
m = 0 excitation. According to our preliminary mea-
surements (k, /k, = 3-7), there does not seem to be a
problem when deriving E from the B fields at the inner
plasma region; e.g., the perpendicular electric field (23
cm axially away from the antenna edge) is several V /ecm
for m = 1 and less than one V/cm for m = —1 excita-
tion. The experimentally obtained electrostatic compo-
nent suggests small at the inner plasma region compared
with that near the plasma surface.!® Of course, gener-
ally, the above derivation using V x B = ,(8D/6t)
cannot be applied without large error if the electrostatic
condition of | K;; || ¢/(w/k) |* (for all ij component)
is satisfied?) (note that typically K,. | ¢/(w/k) |? for
the helicon wave).

The E fields for the case of no magnetic field are

B = ic? (1 9B, BBG> 7

wKy \r 90 0z
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where K| = 1 — (wpe/w)? as m, <K m;, and this becomes
—(wpe/w)? for a higher density plasma in which w < wp..
This condition may correspond to inductively coupled
plasma (ICP).'¥) The same equations may also be used
for the dusty plasma’® (w,y € Wi, Wy K Wpe and weg K
Wei € wee, where d denotes the dust particles), if the
magnetic field B = 0. For the extreme case that n. is
low enough to give wye < wyi, K| becomes 1 — (wp; /w)?.
Note that these F fields express only a wave propagating
component, not an evanescent one.

For the case of a weak static magnetic field (w.. € w),
the E fields are derived from eq. (3) with K = K, =
1 — (wpe/w)? and Ky = —(wpe/w)?(wee/w), and for the
strong field case (W € wo € wee) K = 1 — (wpe/w)?,
K| =1+ (wpi/we:)? and Ky = —(wpi/we:)* (W] wes).

The zz (= yy) and zz components of (wKy)/Ow
without an approximation are 1 + w?, (w® 4+ w2,)/(w? —
W) 4 () (W — )P and 1, fo [,
respectively, and also, those of 8(w?K,)/wdw are 2 +
2w2w? [(w? — w2,)? + 2wiwh, [ (w? —w?)? and 2, respec-
tively. From these components under the conditions of
We € w € Wee (helicon wave) and m, < my, the energy
density W is given by
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Substituting for eq. (6) into eq. (10), W is explicitly de-
termined from the magnetic field data. For the case of
no magnetic field, 14 w2, /w2, + w2 /w? in the first equa-
tion of eq. (10) must be replaced by 1+ w?, /w?, and in
the second equation, 1+ wZ, /w2, must be replaced by 1.

Now we can consider the energy flux S of the helicon
wave. The nonelectromagnetic energy flux T is zero be-
cause K; is independent of k. Hence, each component
of § (= P) is given explicitly by the magnetic field, de-
scribed by egs. (5) and (6). Note that the energy flux
estimation from magnetic fields is correct even though
there exist electrostatic fields. As one example, the z
component of § (along the static magnetic field) is given
by

—wee [ € \° oB: im .
S, = ET (wpe) Re ( 3 By + TBrBz) . (1D

(For the case of no magnetic field, T is again zero and
S (= P) is determined from egs. (5) and (9).) If we can
use eqs. (7) and (8), S, for the helicon wave becomes

1 w
S, = T (k_z) Re (BB, + B; By).
Preliminary experiments have shown the possibility of
estimating the S, value at the plasma center by the use of
eq. (11), from the radial magnetic field distribution and
the central electron density. Obtained values for both
m = 1 and m = —1 excitation do not differ from the
ones using eq. (12) (from the perpendicular component
of the magnetic field at the plasma center) within a factor
of 1.5.

(12)
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For realistic analysis of the experimental data, eq. (6)
can be very useful instead of egs. (7) and (8) which have
been used for approximate distributions so far.> " For
example, deriving S, or W along the z axis from eqs. (10)
and (11) gives us information about the energy flow and
absolute wave damping, as discussed above. If the ex-
cited wave data contain many m mode numbers and/or
many k, values (this needs a complicated treatment of
decomposing m and k, spectra), egs. (3)-(5) should be
used instead.

General formulae of the excited electric fields, which
are difficult to measure in most cases, have been esti-
mated from magnetic field distributions in cylindrical
cold plasma. To show an application of these formu-
lae, explicit expressions of the electric fields FE including
the wave energy density W and the energy flux S of the
helicon wave have been presented.
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